
Samuel Huber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2072205/publications.pdf Version: 2024-02-01

SAMILEL HURED

#	Article	IF	CITATIONS
1	Possible tumour cell reimplantation during curative endoscopic therapy of superficial Barrett's carcinoma. Gut, 2022, 71, 277-286.	12.1	4
2	Disturbed lipid and amino acid metabolisms in COVID-19 patients. Journal of Molecular Medicine, 2022, 100, 555-568.	3.9	42
3	Equal Efficacy and Safety Profile in Elderly Patients with Hepatocellular Carcinoma Receiving Palliative Treatment. Cancers, 2022, 14, 768.	3.7	1
4	In-situ x-ray fluorescence imaging of the endogenous iodine distribution in murine thyroids. Scientific Reports, 2022, 12, 2903.	3.3	8
5	Molecular consequences of SARS-CoV-2 liver tropism. Nature Metabolism, 2022, 4, 310-319.	11.9	98
6	CD4+ T-cell-derived IL-10 promotes CNS inflammation in mice by sustaining effector TÂcell survival. Cell Reports, 2022, 38, 110565.	6.4	14
7	Th17 cell plasticity towards a T-bet-dependent Th1 phenotype is required for bacterial control in Staphylococcus aureus infection. PLoS Pathogens, 2022, 18, e1010430.	4.7	12
8	Tissue Sampling and Homogenization with NIRL Enables Spatially Resolved Cell Layer Specific Proteomic Analysis of the Murine Intestine. International Journal of Molecular Sciences, 2022, 23, 6132.	4.1	3
9	High risk of complications and acute-on-chronic liver failure in cirrhosis patients with acute pancreatitis. European Journal of Internal Medicine, 2022, 102, 54-62.	2.2	3
10	High and Sustained Ex Vivo Frequency but Altered Phenotype of SARS-CoV-2-Specific CD4+ T-Cells in an Anti-CD20-Treated Patient with Prolonged COVID-19. Viruses, 2022, 14, 1265.	3.3	5
11	Three Separate Spike Antigen Exposures by COVID-19 Vaccination or SARS-CoV-2 Infection Elicit Strong Humoral Immune Responses in Healthcare Workers. Vaccines, 2022, 10, 1086.	4.4	3
12	T cell cytokines in the diagnostic of early-onset sepsis. Pediatric Research, 2021, 90, 191-196.	2.3	8
13	Sustained Response After Remdesivir and Convalescent Plasma Therapy in a B-Cell–Depleted Patient With Protracted Coronavirus Disease 2019 (COVID-19). Clinical Infectious Diseases, 2021, 73, e4020-e4024.	5.8	47
14	Liver transplantation for acuteâ€onâ€chronic liver failure predicts postâ€transplant mortality and impaired longâ€term quality of life. Liver International, 2021, 41, 574-584.	3.9	19
15	Seroprevalence of SARS-CoV-2 antibodies among hospital workers in a German tertiary care center: A sequential follow-up study. International Journal of Hygiene and Environmental Health, 2021, 232, 113671.	4.3	37
16	Rationalizing heptadecaphobia: T _H 17 cells and associated cytokines in cancer and metastasis. FEBS Journal, 2021, 288, 6942-6971.	4.7	7
17	Clonal expansion and activation of tissue-resident memory-like T _H 17 cells expressing GM-CSF in the lungs of patients with severe COVID-19. Science Immunology, 2021, 6, .	11.9	125
18	Malaria in the Time of COVID-19: Do Not Miss the Real Cause of Illness. Tropical Medicine and Infectious Disease, 2021, 6, 40.	2.3	6

#	Article	IF	CITATIONS
19	X-ray-Based Techniques to Study the Nano–Bio Interface. ACS Nano, 2021, 15, 3754-3807.	14.6	60
20	The good and the bad about separation anxiety: roles of IL-22 and IL-22BP in liver pathologies. Seminars in Immunopathology, 2021, 43, 591-607.	6.1	16
21	T cell plasticity in renal autoimmune disease. Cell and Tissue Research, 2021, 385, 323-333.	2.9	12
22	Patient Characteristics and Clinical Course of COVID-19 Patients Treated at a German Tertiary Center during the First and Second Waves in the Year 2020. Journal of Clinical Medicine, 2021, 10, 2274.	2.4	19
23	Multi-dimensional and longitudinal systems profiling reveals predictive pattern of severe COVID-19. IScience, 2021, 24, 102752.	4.1	9
24	Convalescent plasma treatment for early postâ€kidney transplant acquired COVIDâ€19. Transplant Infectious Disease, 2021, 23, e13685.	1.7	5
25	Leukocyteâ€Derived Highâ€Mobility Group Box 1 Governs Hepatic Immune Responses to Listeria monocytogenes. Hepatology Communications, 2021, 5, 2104-2120.	4.3	3
26	Validation of a Prospective Urinalysis-Based Prediction Model for ICU Resources and Outcome of COVID-19 Disease: A Multicenter Cohort Study. Journal of Clinical Medicine, 2021, 10, 3049.	2.4	12
27	Single-cell atlas of hepatic T cells reveals expansion of liver-resident naive-like CD4+ T cells in primary sclerosing cholangitis. Journal of Hepatology, 2021, 75, 414-423.	3.7	49
28	Efferocytosis fuels malignant pleural effusion through TIMP1. Science Advances, 2021, 7, .	10.3	6
29	Induction of IL-22-Producing CD4+ T Cells by Segmented Filamentous Bacteria Independent of Classical Th17 Cells. Frontiers in Immunology, 2021, 12, 671331.	4.8	7
30	Trans-Ned 19-Mediated Antagonism of Nicotinic Acid Adenine Nucleotide—Mediated Calcium Signaling Regulates Th17 Cell Plasticity in Mice. Cells, 2021, 10, 3039.	4.1	2
31	Dual NADPH oxidases DUOX1 and DUOX2 synthesize NAADP and are necessary for Ca ²⁺ signaling during T cell activation. Science Signaling, 2021, 14, eabe3800.	3.6	28
32	IL-17 Receptor C Signaling Controls CD4+ TH17 Immune Responses and Tissue Injury in Immune-Mediated Kidney Diseases. Journal of the American Society of Nephrology: JASN, 2021, 32, 3081-3098.	6.1	14
33	Interleukin-10 improves stroke outcome by controlling the detrimental Interleukin-17A response. Journal of Neuroinflammation, 2021, 18, 265.	7.2	26
34	TRPM2 Is Not Required for T-Cell Activation and Differentiation. Frontiers in Immunology, 2021, 12, 778916.	4.8	2
35	Guidelines for the use of flow cytometry and cell sorting in immunological studies (third edition). European Journal of Immunology, 2021, 51, 2708-3145.	2.9	198
36	Low incidence of COVID-19 in a prospective cohort of patients with liver cirrhosis and hepatocellular carcinoma treated at a tertiary medical center during the 2020 pandemic. PLoS ONE, 2021, 16, e0258450.	2.5	1

#	Article	IF	CITATIONS
37	Microbiota-Dependent Effects of IL-22. Cells, 2020, 9, 2205.	4.1	23
38	Decreased Frequency of Intestinal CD39+ γδ+ T Cells With Tissue-Resident Memory Phenotype in Inflammatory Bowel Disease. Frontiers in Immunology, 2020, 11, 567472.	4.8	10
39	Pathogen-induced tissue-resident memory T _H 17 (T _{RM} 17) cells amplify autoimmune kidney disease. Science Immunology, 2020, 5, .	11.9	58
40	Defining the CD39/CD73 Axis in SARS-CoV-2 Infection: The CD73- Phenotype Identifies Polyfunctional Cytotoxic Lymphocytes. Cells, 2020, 9, 1750.	4.1	48
41	NK cell receptor NKG2D enforces proinflammatory features and pathogenicity of Th1 and Th17 cells. Journal of Experimental Medicine, 2020, 217, .	8.5	25
42	Therapeutic Targeting of Myeloperoxidase Attenuates NASH in Mice. Hepatology Communications, 2020, 4, 1441-1458.	4.3	23
43	Microbiota-Propelled T Helper 17 Cells in Inflammatory Diseases and Cancer. Microbiology and Molecular Biology Reviews, 2020, 84, .	6.6	37
44	The induction and function of the anti-inflammatory fate of TH17 cells. Nature Communications, 2020, 11, 3334.	12.8	27
45	A prenatally disrupted airway epithelium orchestrates the fetal origin of asthma in mice. Journal of Allergy and Clinical Immunology, 2020, 145, 1641-1654.	2.9	15
46	IgG Fc sialylation is regulated during the germinal center reaction following immunization with different adjuvants. Journal of Allergy and Clinical Immunology, 2020, 146, 652-666.e11.	2.9	45
47	IL22BP Mediates the Antitumor Effects of Lymphotoxin Against Colorectal Tumors in Mice and Humans. Gastroenterology, 2020, 159, 1417-1430.e3.	1.3	31
48	Anti-inflammatory microenvironment of esophageal adenocarcinomas negatively impacts survival. Cancer Immunology, Immunotherapy, 2020, 69, 1043-1056.	4.2	10
49	Monocytes as Potential Mediators of Pathogenâ€Induced Tâ€Helper 17 Differentiation in Patients With Primary Sclerosing Cholangitis (PSC). Hepatology, 2020, 72, 1310-1326.	7.3	50
50	Systemic interleukin 10 levels indicate advanced stages while interleukin 17A levels correlate with reduced survival in esophageal adenocarcinomas. PLoS ONE, 2020, 15, e0231833.	2.5	6
51	TGF-Î ² signaling in Th17 cells promotes IL-22 production and colitis-associated colon cancer. Nature Communications, 2020, 11, 2608.	12.8	90
52	Title is missing!. , 2020, 15, e0231833.		0
53	Title is missing!. , 2020, 15, e0231833.		0
54	Title is missing!. , 2020, 15, e0231833.		0

#	Article	IF	CITATIONS
55	Title is missing!. , 2020, 15, e0231833.		0
56	Dendritic Cell Accumulation in the Gut and Central Nervous System Is Differentially Dependent on $\hat{l}\pm4$ Integrins. Journal of Immunology, 2019, 203, 1417-1427.	0.8	7
57	Comparison of the integrin $\hat{1}\pm4\hat{1}^27$ expression pattern of memory T cell subsets in HIV infection and ulcerative colitis. PLoS ONE, 2019, 14, e0220008.	2.5	16
58	IL-10-producing T cells and their dual functions. Seminars in Immunology, 2019, 44, 101335.	5.6	78
59	Interferon-Î ³ -dependent immune responses contribute to the pathogenesis of sclerosing cholangitis in mice. Journal of Hepatology, 2019, 71, 773-782.	3.7	30
60	Endogenous IL-22 is dispensable for experimental glomerulonephritis. American Journal of Physiology - Renal Physiology, 2019, 316, F712-F722.	2.7	7
61	Regulation of IL-22BP in psoriasis. Scientific Reports, 2018, 8, 5085.	3.3	23
62	T H 17â€ ⁻ cell plasticity: The role of dendritic cells and molecular mechanisms. Journal of Autoimmunity, 2018, 87, 50-60.	6.5	50
63	Oxysterol Sensing through the Receptor GPR183 Promotes the Lymphoid-Tissue-Inducing Function of Innate Lymphoid Cells and Colonic Inflammation. Immunity, 2018, 48, 120-132.e8.	14.3	149
64	Flt3 ligand expands bona fide innate lymphoid cell precursors in vivo. Scientific Reports, 2018, 8, 154.	3.3	12
65	Interleukin-22-deficiency and microbiota contribute to the exacerbation of Toxoplasma gondii-induced intestinal inflammation. Mucosal Immunology, 2018, 11, 1181-1190.	6.0	29
66	Recipe for IBD: can we use food to control inflammatory bowel disease?. Seminars in Immunopathology, 2018, 40, 145-156.	6.1	26
67	Role of IL-10 Receptor Signaling in the Function of CD4+ T-Regulatory Type 1 cells: T-Cell Therapy in Patients with Inflammatory Bowel Disease. Critical Reviews in Immunology, 2018, 38, 415-431.	0.5	10
68	Colitis Promotes a Pathological Condition of the Liver in the Absence of Foxp3+ Regulatory T Cells. Journal of Immunology, 2018, 201, 3558-3568.	0.8	16
69	Molecular and functional heterogeneity of IL-10-producing CD4+ T cells. Nature Communications, 2018, 9, 5457.	12.8	93
70	Microbiota-driven interleukin-17-producing cells and eosinophils synergize to accelerate multiple myeloma progression. Nature Communications, 2018, 9, 4832.	12.8	144
71	IL-10 Receptor Signaling Empowers Regulatory T Cells to Control Th17 Responses and Protect from GN. Journal of the American Society of Nephrology: JASN, 2018, 29, 1825-1837.	6.1	41
72	Dietary Habits and Intestinal Immunity: From Food Intake to CD4+ TH Cells. Frontiers in Immunology, 2018, 9, 3177.	4.8	33

#	Article	IF	CITATIONS
73	IL-33 modulates inflammatory brain injury but exacerbates systemic immunosuppression following ischemic stroke. JCI Insight, 2018, 3, .	5.0	39
74	TH17 cells express ST2 and are controlled by the alarmin IL-33 in the small intestine. Mucosal Immunology, 2017, 10, 1431-1442.	6.0	46
75	IL-10 Receptor Signaling Is Essential for TR1 Cell Function In Vivo. Journal of Immunology, 2017, 198, 1130-1141.	0.8	108
76	Dysfunction of hepatic regulatory T cells in experimental sclerosing cholangitis is related to IL-12 signaling. Journal of Hepatology, 2017, 66, 798-805.	3.7	26
77	Distinct Microbial Communities Trigger Colitis Development upon Intestinal Barrier Damage via Innate or Adaptive Immune Cells. Cell Reports, 2017, 21, 994-1008.	6.4	105
78	Intestinal type 1 regulatory T cells migrate to periphery to suppress diabetogenic T cells and prevent diabetes development. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10443-10448.	7.1	77
79	A Protective Function of IL-22BP in Ischemia Reperfusion and Acetaminophen-Induced Liver Injury. Journal of Immunology, 2017, 199, 4078-4090.	0.8	38
80	Basic Aspects of T Helper Cell Differentiation. Methods in Molecular Biology, 2017, 1514, 19-30.	0.9	68
81	Regulation of TH17 Cells and Associated Cytokines in Wound Healing, Tissue Regeneration, and Carcinogenesis. International Journal of Molecular Sciences, 2017, 18, 1033.	4.1	112
82	TH17 Cell and Epithelial Cell Crosstalk during Inflammatory Bowel Disease and Carcinogenesis. Frontiers in Immunology, 2017, 8, 1373.	4.8	55
83	CD4 ⁺ T Helper Cell Plasticity in Infection, Inflammation, and Autoimmunity. Mediators of Inflammation, 2017, 2017, 1-2.	3.0	8
84	IL-22 dampens the T cell response in experimental malaria. Scientific Reports, 2016, 6, 28058.	3.3	24
85	Autoimmune Renal Disease Is Exacerbated by S1P-Receptor-1-Dependent Intestinal Th17 Cell Migration to the Kidney. Immunity, 2016, 45, 1078-1092.	14.3	149
86	A pathogenic role for T cell–derived IL-22BP in inflammatory bowel disease. Science, 2016, 354, 358-362.	12.6	128
87	Plasticity of Th17 Cells in Autoimmune Kidney Diseases. Journal of Immunology, 2016, 197, 449-457.	0.8	31
88	IL-23 prevents IL-13-dependent tissue repair associated with Ly6C lo monocytes in Entamoeba histolytica -induced liver damage. Journal of Hepatology, 2016, 64, 1147-1157.	3.7	18
89	Intestinal Regulatory CD4 + T Cells. , 2015, , 777-785.		2
90	Cytokine crowdsourcing: multicellular production of TH17-associated cytokines. Journal of Leukocyte Biology, 2015, 97, 499-510.	3.3	20

#	Article	IF	CITATIONS
91	Nanoparticle-based autoantigen delivery to Treg-inducing liver sinusoidal endothelial cells enables control of autoimmunity in mice. Journal of Hepatology, 2015, 62, 1349-1356.	3.7	145
92	Th17 cells transdifferentiate into regulatory T cells during resolution of inflammation. Nature, 2015, 523, 221-225.	27.8	653
93	Prenatal Acetaminophen Affects Maternal Immune and Endocrine Adaptation to Pregnancy, Induces Placental Damage, and Impairs Fetal Development in Mice. American Journal of Pathology, 2015, 185, 2805-2818.	3.8	43
94	The Role of T _H 17-Associated Cytokines in Health and Disease. Journal of Immunology Research, 2014, 2014, 1-1.	2.2	4
95	The Fire Within: Microbes Inflame Tumors. Cell, 2014, 157, 776-783.	28.9	133
96	TGF-β-dependent induction of CD4+CD25+Foxp3+ Tregs by liver sinusoidal endothelial cells. Journal of Hepatology, 2014, 61, 594-599.	3.7	185
97	Hepatocytes Contribute to Immune Regulation in the Liver by Activation of the Notch Signaling Pathway in T Cells. Journal of Immunology, 2013, 191, 5574-5582.	0.8	48
98	Inhibition of inflammatory CD4 T cell activity by murine liver sinusoidal endothelial cells. Journal of Hepatology, 2013, 58, 112-118.	3.7	91
99	Coexpression of CD49b and LAG-3 identifies human and mouse T regulatory type 1 cells. Nature Medicine, 2013, 19, 739-746.	30.7	700
100	Regulatory T Cell–Derived IL-10 Ameliorates Crescentic GN. Journal of the American Society of Nephrology: JASN, 2013, 24, 930-942.	6.1	47
101	Innate Immune Cells in Inflammation and Cancer. Cancer Immunology Research, 2013, 1, 77-84.	3.4	97
102	Microbiota-induced activation of epithelial IL-6 signaling links inflammasome-driven inflammation with transmissible cancer. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9862-9867.	7.1	277
103	The Intestine: where amazing things happen. Cell Research, 2012, 22, 277-279.	12.0	8
104	Life, death, and miracles: <scp>T</scp> h17 cells in the intestine. European Journal of Immunology, 2012, 42, 2238-2245.	2.9	64
105	IL-22BP is regulated by the inflammasome and modulates tumorigenesis in the intestine. Nature, 2012, 491, 259-263.	27.8	641
106	Control of TH17 cells occurs in the small intestine. Nature, 2011, 475, 514-518.	27.8	567
107	Th17 Cells Express Interleukin-10 Receptor and Are Controlled by Foxp3â^' and Foxp3+ Regulatory CD4+ T Cells in an Interleukin-10-Dependent Manner. Immunity, 2011, 34, 554-565.	14.3	529
108	Memory/effector (CD45RBlo) CD4 T cells are controlled directly by IL-10 and cause IL-22–dependent intestinal pathology. Journal of Experimental Medicine, 2011, 208, 1027-1040.	8.5	164

#	Article	IF	CITATIONS
109	Chronic Inflammatory IFN-Î ³ Signaling Suppresses Hepatocarcinogenesis in Mice by Sensitizing Hepatocytes for Apoptosis. Cancer Research, 2011, 71, 3763-3771.	0.9	24
110	Role of Activin A in the Induction of Foxp3+ and Foxp3â^' CD4+ Regulatory T Cells. Critical Reviews in Immunology, 2011, 31, 53-60.	0.5	17
111	Checks and Balances: IL-23 in the Intestine. Immunity, 2010, 33, 150-152.	14.3	3
112	Inflammation-induced tumorigenesis in the colon is regulated by caspase-1 and NLRC4. Proceedings of the United States of America, 2010, 107, 21635-21640.	7.1	376
113	Activin A Promotes the TGF-Î2-Induced Conversion of CD4+CD25â^' T Cells into Foxp3+ Induced Regulatory T Cells. Journal of Immunology, 2009, 182, 4633-4640.	0.8	111
114	Coexpression of TGF-β1 and IL-10 Enables Regulatory T Cells to Completely Suppress Airway Hyperreactivity. Journal of Immunology, 2008, 181, 7751-7758.	0.8	55
115	Ectopic expression of neural autoantigen in mouse liver suppresses experimental autoimmune neuroinflammation by inducing antigen-specific Tregs. Journal of Clinical Investigation, 2008, 118, 3403-10.	8.2	142
116	P38 MAP Kinase Signaling Is Required for the Conversion of CD4+CD25â^' T Cells into iTreg. PLoS ONE, 2008, 3, e3302.	2.5	50
117	TGF-beta and CD4+CD25+ Regulatory T cells. Frontiers in Bioscience - Landmark, 2006, 11, 1014.	3.0	40
118	TGFÂ regulates the CD4+CD25+ T-cell pool and the expression of Foxp3 in vivo. International Immunology, 2004, 16, 1241-1249.	4.0	98
119	Cutting Edge: TGF-β Signaling Is Required for the In Vivo Expansion and Immunosuppressive Capacity of Regulatory CD4+CD25+ T Cells. Journal of Immunology, 2004, 173, 6526-6531.	0.8	376
120	TGF-β Suppresses Tumor Progression in Colon Cancer by Inhibition of IL-6 trans-Signaling. Immunity, 2004, 21, 491-501.	14.3	700