Grzegorz Ludwik Golewski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2072133/publications.pdf

Version: 2024-02-01

41 papers

2,313 citations

147801 31 h-index 377865 34 g-index

42 all docs 42 docs citations

times ranked

42

993 citing authors

#	Article	IF	CITATIONS
1	Green concrete composite incorporating fly ash with high strength and fracture toughness. Journal of Cleaner Production, 2018, 172, 218-226.	9.3	131
2	Evaluation of morphology and size of cracks of the Interfacial Transition Zone (ITZ) in concrete containing fly ash (FA). Journal of Hazardous Materials, 2018, 357, 298-304.	12.4	113
3	Measurement of fracture mechanics parameters of concrete containing fly ash thanks to use of Digital Image Correlation (DIC) method. Measurement: Journal of the International Measurement Confederation, 2019, 135, 96-105.	5.0	97
4	Evaluation of fracture processes under shear with the use of DIC technique in fly ash concrete and accurate measurement of crack path lengths with the use of a new crack tip tracking method. Measurement: Journal of the International Measurement Confederation, 2021, 181, 109632.	5.0	85
5	Estimation of the optimum content of fly ash in concrete composite based on the analysis of fracture toughness tests using various measuring systems. Construction and Building Materials, 2019, 213, 142-155.	7.2	81
6	Studies of Fracture Toughness in Concretes Containing Fly Ash and Silica Fume in the First 28 Days of Curing. Materials, 2021, 14, 319.	2.9	75
7	The influence of microcrack width on the mechanical parameters in concrete with the addition of fly ash: Consideration of technological and ecological benefits. Construction and Building Materials, 2019, 197, 849-861.	7.2	74
8	An assessment of microcracks in the Interfacial Transition Zone of durable concrete composites with fly ash additives. Composite Structures, 2018, 200, 515-520.	5.8	73
9	An analysis of shear fracture toughness KIIc and microstructure in concretes containing fly-ash. Construction and Building Materials, 2014, 51, 207-214.	7.2	72
10	Validation of the favorable quantity of fly ash in concrete and analysis of crack propagation and its length – Using the crack tip tracking (CTT) method – In the fracture toughness examinations under Mode II, through digital image correlation. Construction and Building Materials, 2021, 296, 122362.	7.2	71
11	Strengthening the very early-age structure of cementitious composites with coal fly ash via incorporating a novel nanoadmixture based on C-S-H phase activators. Construction and Building Materials, 2021, 312, 125426.	7.2	70
12	Green Concrete Based on Quaternary Binders with Significant Reduced of CO2 Emissions. Energies, 2021, 14, 4558.	3.1	69
13	Effect of curing time on the fracture toughness of fly ash concrete composites. Composite Structures, 2018, 185, 105-112.	5.8	68
14	Improvement of fracture toughness of green concrete as a result of addition of coal fly ash. Characterization of fly ash microstructure. Materials Characterization, 2017, 134, 335-346.	4.4	66
15	Numerical modelling crack propagation under Mode II fracture in plain concretes containing siliceous fly-ash additive using XFEM method. Computational Materials Science, 2012, 62, 75-78.	3.0	64
16	Application of the C-S-H Phase Nucleating Agents to Improve the Performance of Sustainable Concrete Composites Containing Fly Ash for Use in the Precast Concrete Industry. Materials, 2021, 14, 6514.	2.9	62
17	The Beneficial Effect of the Addition of Fly Ash on Reduction of the Size of Microcracks in the ITZ of Concrete Composites under Dynamic Loading. Energies, 2021, 14, 668.	3.1	61
18	Energy Savings Associated with the Use of Fly Ash and Nanoadditives in the Cement Composition. Energies, 2020, 13, 2184.	3.1	59

#	Article	lF	CITATIONS
19	A failure analysis of concrete composites incorporating fly ash during torsional loading. Composite Structures, 2018, 183, 527-535.	5.8	59
20	Effect of aggregate kind and graining on modelling of plain concrete under compression. Computational Materials Science, 2008, 43, 119-126.	3.0	58
21	Rheology of Cement Pastes with Siliceous Fly Ash and the CSH Nano-Admixture. Materials, 2021, 14, 3640.	2.9	58
22	The fracture toughness the KIIIc of concretes with F fly ash (FA) additive. Construction and Building Materials, 2017, 143, 444-454.	7.2	57
23	Improvement of Strength Parameters of Cement Matrix with the Addition of Siliceous Fly Ash by Using Nanometric C-S-H Seeds. Energies, 2020, 13, 6734.	3.1	56
24	Potential of siliceous fly ash and silica fume as a substitute for binder in cementitious concretes. E3S Web of Conferences, 2018, 49, 00030.	0.5	55
25	Generalized Fracture Toughness and Compressive Strength of Sustainable Concrete Including Low Calcium Fly Ash. Materials, 2017, 10, 1393.	2.9	53
26	Nanoparticle-reinforced building materials with applications in civil engineering. Advances in Mechanical Engineering, 2020, 12, 168781402096543.	1.6	53
27	A novel specific requirements for materials used in reinforced concrete composites subjected to dynamic loads. Composite Structures, 2019, 223, 110939.	5.8	51
28	Changes in the Fracture Toughness under Mode II Loading of Low Calcium Fly Ash (LCFA) Concrete Depending on Ages. Materials, 2020, 13, 5241.	2.9	51
29	Determination of fracture toughness in concretes containing siliceous fly ash during mode III loading. Structural Engineering and Mechanics, 2017, 62, 1-9.	1.0	50
30	Effect of fly ash addition on the fracture toughness of plain concrete at third model of fracture. Journal of Civil Engineering and Management, 2017, 23, 613-620.	3.5	49
31	On the special construction and materials conditions reducing the negative impact of vibrations on concrete structures. Materials Today: Proceedings, 2021, 45, 4344-4348.	1.8	47
32	Macroscopic Evaluation of Fracture Processes in Fly Ash Concrete. Solid State Phenomena, 0, 254, 188-193.	0.3	46
33	Experimental Investigation and Numerical Modeling Fracture Processes under Mode II in Concrete Composites Containing Fly-Ash Additive at early Age. Solid State Phenomena, 0, 188, 158-163.	0.3	45
34	Fracture Toughness at Shear (Mode II) of Concretes Made of Natural and Broken Aggregates. , 2006, , 537-546.		42
35	A Study of Mode III Fracture Toughness in Young and Mature Concrete with Fly Ash Additive. Solid State Phenomena, 0, 254, 120-125.	0.3	40
36	Physical characteristics of concrete, essential in design of fractureâ€resistant, dynamically loaded reinforced concrete structures. Material Design and Processing Communications, 2019, 1, e82.	0.9	25

#	Article	IF	CITATIONS
37	The Specificity of Shaping and Execution of Monolithic Pocket Foundations (PF) in Hall Buildings. Buildings, 2022, 12, 192.	3.1	20
38	Fracture Toughness of Concrete Containing Fly Ash. , 2018, , .		2
39	Analysis influence of Dmax on fracture mechanics parameters of concrete made of limestone aggregate at three point bending Budownictwo I Architektura, 2020, 1, 005-016.	0.3	1
40	An analysis of fracture toughness, at third mode fracture in concretes containing fly-ash additives. Budownictwo I Architektura, 2020, 12, 145-152.	0.3	0
41	The Application of Berkovich nanoindenter to the study of interfacial transition zone in concretes containing fly-ash. Budownictwo I Architektura, 2020, 13, 085-092.	0.3	0