Joan Massagué Solé

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2071747/publications.pdf

Version: 2024-02-01

253 papers 121,818 citations

150 h-index 256 g-index

269 all docs

269 docs citations

times ranked

269

84663 citing authors

#	Article	IF	CITATIONS
1	Metabolic Profiling Reveals a Dependency of Human Metastatic Breast Cancer on Mitochondrial Serine and One-Carbon Unit Metabolism. Molecular Cancer Research, 2022, 18, 599-611.	3.4	56
2	Targeting S100A9–ALDH1A1–Retinoic Acid Signaling to Suppress Brain Relapse in <i>EGFR</i> hutant Lung Cancer. Cancer Discovery, 2022, 12, 1002-1021.	9.4	22
3	Genomic characterization of metastatic patterns from prospective clinical sequencing of 25,000 patients. Cell, 2022, 185, 563-575.e11.	28.9	223
4	Kathryn Anderson, grand dame of developmental biology. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2101148118.	7.1	0
5	Metastasis-Initiating Cells and Ecosystems. Cancer Discovery, 2021, 11, 971-994.	9.4	134
6	The transcription factor Rreb1 regulates epithelial architecture, invasiveness, and vasculogenesis in early mouse embryos. ELife, 2021, 10, .	6.0	7
7	Anti-tumor effects of an ID antagonist with no observed acquired resistance. Npj Breast Cancer, 2021, 7, 58.	5. 2	8
8	Cytotoxic lymphocytes target characteristic biophysical vulnerabilities in cancer. Immunity, 2021, 54, 1037-1054.e7.	14.3	56
9	Targeting metastatic cancer. Nature Medicine, 2021, 27, 34-44.	30.7	447
10	ID1 Mediates Escape from TGF \hat{l}^2 Tumor Suppression in Pancreatic Cancer. Cancer Discovery, 2020, 10, 142-157.	9.4	59
11	TGF- \hat{l}^2 orchestrates fibrogenic and developmental EMTs via the RAS effector RREB1. Nature, 2020, 577, 566-571.	27.8	271
12	52. BrMPANEL: A PUBLIC RESOURCE OF ORGANOTROPIC CELL LINES. Neuro-Oncology Advances, 2020, 2, ii10-ii11.	0.7	0
13	Brain Metastasis Cell Lines Panel: A Public Resource of Organotropic Cell Lines. Cancer Research, 2020, 80, 4314-4323.	0.9	51
14	Regenerative lineages and immune-mediated pruning in lung cancer metastasis. Nature Medicine, 2020, 26, 259-269.	30.7	274
15	L1CAM defines the regenerative origin of metastasis-initiating cells in colorectal cancer. Nature Cancer, 2020, 1, 28-45.	13.2	137
16	The Human Tumor Atlas Network: Charting Tumor Transitions across Space and Time at Single-Cell Resolution. Cell, 2020, 181, 236-249.	28.9	334
17	Guidelines and definitions for research on epithelial–mesenchymal transition. Nature Reviews Molecular Cell Biology, 2020, 21, 341-352.	37.0	1,195
18	Structural basis for distinct roles of SMAD2 and SMAD3 in FOXH1 pioneer-directed TGF-Î ² signaling. Genes and Development, 2019, 33, 1506-1524.	5.9	61

#	Article	IF	CITATIONS
19	H3K18ac Primes Mesendodermal Differentiation upon Nodal Signaling. Stem Cell Reports, 2019, 13, 642-656.	4.8	16
20	Dynamic Incorporation of Histone H3 Variants into Chromatin Is Essential for Acquisition of Aggressive Traits and Metastatic Colonization. Cancer Cell, 2019, 36, 402-417.e13.	16.8	69
21	A rectal cancer organoid platform to study individual responses to chemoradiation. Nature Medicine, 2019, 25, 1607-1614.	30.7	320
22	Genome-scale screens identify JNK–JUN signaling as a barrier for pluripotency exit and endoderm differentiation. Nature Genetics, 2019, 51, 999-1010.	21.4	90
23	Transforming Growth Factor- \hat{I}^2 Signaling in Immunity and Cancer. Immunity, 2019, 50, 924-940.	14.3	1,360
24	Flura-seq identifies organ-specific metabolic adaptations during early metastatic colonization. ELife, 2019, 8, .	6.0	46
25	Labeling and Isolation of Fluorouracil Tagged RNA by Cytosine Deaminase Expression. Bio-protocol, 2019, 9, e3433.	0.4	2
26	TGF-Î ² Inhibition and Immunotherapy: Checkmate. Immunity, 2018, 48, 626-628.	14.3	103
27	Contextual determinants of TGF \hat{l}^2 action in development, immunity and cancer. Nature Reviews Molecular Cell Biology, 2018, 19, 419-435.	37.0	557
28	Pericyte-like spreading by disseminated cancer cells activates YAP and MRTF for metastatic colonization. Nature Cell Biology, 2018, 20, 966-978.	10.3	186
29	Understanding the molecular mechanisms driving metastasis. Molecular Oncology, 2017, 11, 3-4.	4.6	52
30	Complement Component 3 Adapts the Cerebrospinal Fluid for Leptomeningeal Metastasis. Cell, 2017, 168, 1101-1113.e13.	28.9	219
31	Tissue factor-specific ultra-bright SERRS nanostars for Raman detection of pulmonary micrometastases. Nanoscale, 2017, 9, 1110-1119.	5.6	41
32	Structural basis for genome wide recognition of 5-bp GC motifs by SMAD transcription factors. Nature Communications, 2017, 8, 2070.	12.8	81
33	The p53 Family Coordinates Wnt and Nodal Inputs in Mesendodermal Differentiation of Embryonic Stem Cells. Cell Stem Cell, 2017, 20, 70-86.	11.1	121
34	Carcinoma–astrocyte gap junctions promote brain metastasis by cGAMP transfer. Nature, 2016, 533, 493-498.	27.8	677
35	TGF-Î ² Tumor Suppression through a Lethal EMT. Cell, 2016, 164, 1015-1030.	28.9	488
36	Metastatic colonization by circulating tumour cells. Nature, 2016, 529, 298-306.	27.8	1,498

#	Article	IF	CITATIONS
37	Arresting supporters: targeting neutrophils in metastasis. Cell Research, 2016, 26, 273-274.	12.0	15
38	Metastatic Latency and Immune Evasion through Autocrine Inhibition of WNT. Cell, 2016, 165, 45-60.	28.9	583
39	Therapy-induced tumour secretomes promote resistance and tumour progression. Nature, 2015, 520, 368-372.	27.8	389
40	Structural determinants of Smad function in TGF- \hat{l}^2 signaling. Trends in Biochemical Sciences, 2015, 40, 296-308.	7.5	297
41	Surviving at a Distance: Organ-Specific Metastasis. Trends in Cancer, 2015, 1, 76-91.	7.4	419
42	Metastatic Competence Can Emerge with Selection of Preexisting Oncogenic Alleles without a Need of New Mutations. Cancer Research, 2015, 75, 3713-3719.	0.9	48
43	Invasion and Metastasis., 2015,, 269-284.e2.		5
44	Loss of the multifunctional RNA-binding protein RBM47 as a source of selectable metastatic traits in breast cancer. ELife, 2014, 3, .	6.0	115
45	<i><i><scp>RARRES</scp>3</i> suppresses breast cancer lung metastasis by regulating adhesion and differentiation. EMBO Molecular Medicine, 2014, 6, 865-881.</i>	6.9	65
46	Serpins Promote Cancer Cell Survival and Vascular Co-Option in Brain Metastasis. Cell, 2014, 156, 1002-1016.	28.9	672
47	Metastatic Stem Cells: Sources, Niches, and Vital Pathways. Cell Stem Cell, 2014, 14, 306-321.	11.1	591
48	Analysis of tumour- and stroma-supplied proteolytic networks reveals a brain-metastasis-promoting role forÂcathepsin S. Nature Cell Biology, 2014, 16, 876-888.	10.3	300
49	Immunostaining Protocol: P-Stat3 (Xenograft and Mice). Bio-protocol, 2014, 4, .	0.4	0
50	Selection of Bone Metastasis Seeds by Mesenchymal Signals in the Primary Tumor Stroma. Cell, 2013, 154, 1060-1073.	28.9	359
51	Epigenetic expansion of VHL-HIF signal output drives multiorgan metastasis in renal cancer. Nature Medicine, 2013, 19, 50-56.	30.7	174
52	Origins of Metastatic Traits. Cancer Cell, 2013, 24, 410-421.	16.8	457
53	TGF- \hat{l}^2 -Id1 Signaling Opposes Twist1 and Promotes Metastatic Colonization via a Mesenchymal-to-Epithelial Transition. Cell Reports, 2013, 5, 1228-1242.	6.4	205
54	Signalling change: signal transduction through the decades. Nature Reviews Molecular Cell Biology, 2013, 14, 393-398.	37.0	53

#	Article	IF	Citations
55	Hypoxia Signalingâ€"License to Metastasize. Cancer Discovery, 2013, 3, 1103-1104.	9.4	7
56	Extracellular matrix players in metastatic niches. EMBO Journal, 2012, 31, 254-256.	7.8	85
57	Molecular Pathways: VCAM-1 as a Potential Therapeutic Target in Metastasis. Clinical Cancer Research, 2012, 18, 5520-5525.	7.0	121
58	Dependency of Colorectal Cancer on a TGF-Î ² -Driven Program in Stromal Cells for Metastasis Initiation. Cancer Cell, 2012, 22, 571-584.	16.8	881
59	Intracerebral infusion of the bispecific targeted toxin DTATEGF in a mouse xenograft model of a human metastatic non-small cell lung cancer. Journal of Neuro-Oncology, 2012, 109, 229-238.	2.9	17
60	TGFÎ ² signalling in context. Nature Reviews Molecular Cell Biology, 2012, 13, 616-630.	37.0	2,619
61	A CXCL1 Paracrine Network Links Cancer Chemoresistance and Metastasis. Cell, 2012, 150, 165-178.	28.9	913
62	Field Cancerization: Something New Under the Sun. Cell, 2012, 149, 1179-1181.	28.9	43
63	Structural Basis for the Versatile Interactions of Smad7 with Regulator WW Domains in TGF-Î ² Pathways. Structure, 2012, 20, 1726-1736.	3.3	93
64	Ubiquitin removal in the TGF- \hat{l}^2 pathway. Nature Cell Biology, 2012, 14, 656-657.	10.3	37
65	TGFâ€Î² control of stem cell differentiation genes. FEBS Letters, 2012, 586, 1953-1958.	2.8	133
66	TGFâ€Î² signaling in development and disease. FEBS Letters, 2012, 586, 1833-1833.	2.8	93
67	Clinical implications of cancer self-seeding. Nature Reviews Clinical Oncology, 2011, 8, 369-377.	27.6	266
68	Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs. Nature Medicine, 2011, 17, 867-874.	30.7	740
69	A Poised Chromatin Platform for TGF-β Access to Master Regulators. Cell, 2011, 147, 1511-1524.	28.9	251
70	Macrophage Binding to Receptor VCAM-1 Transmits Survival Signals in Breast Cancer Cells that Invade the Lungs. Cancer Cell, 2011, 20, 538-549.	16.8	493
71	VCAM-1 Promotes Osteolytic Expansion of Indolent Bone Micrometastasis of Breast Cancer by Engaging $\hat{l}\pm4\hat{l}^21$ -Positive Osteoclast Progenitors. Cancer Cell, 2011, 20, 701-714.	16.8	445
72	Phase II Trial of Saracatinib (AZD0530), an Oral SRC-inhibitor for the Treatment of Patients with Hormone Receptor-negative Metastatic Breast Cancer. Clinical Breast Cancer, 2011, 11, 306-311.	2.4	118

#	Article	IF	Citations
73	Breast Cancer Methylomes Establish an Epigenomic Foundation for Metastasis. Science Translational Medicine, 2011, 3, 75ra25.	12.4	242
74	Off-target effects dominate a large-scale RNAi screen for modulators of the TGF- \hat{l}^2 pathway and reveal microRNA regulation of TGFBR2. Silence: A Journal of RNA Regulation, 2011, 2, 3.	8.1	78
75	Breast Cancer Tumor Size, Nodal Status, and Prognosis: Biology Trumps Anatomy. Journal of Clinical Oncology, 2011, 29, 2610-2612.	1.6	33
76	MicroRNA-335 inhibits tumor reinitiation and is silenced through genetic and epigenetic mechanisms in human breast cancer. Genes and Development, 2011, 25, 226-231.	5.9	193
77	A Smad action turnover switch operated by WW domain readers of a phosphoserine code. Genes and Development, 2011, 25, 1275-1288.	5.9	207
78	TIF 1^3 Knockdown Enhances Hematopoietic Stem Cell Self Renewal with Preferential Myeloid Differentiation and Delayed Erythropoiesis. Blood, 2011, 118, 4829-4829.	1.4	8
79	HER2 Silences Tumor Suppression in Breast Cancer Cells by Switching Expression of C/EBPβ Isoforms. Cancer Research, 2010, 70, 9927-9936.	0.9	44
80	Modeling metastasis in the mouse. Current Opinion in Pharmacology, 2010, 10, 571-577.	3.5	104
81	Diverted Total Synthesis Leads to the Generation of Promising Cell-Migration Inhibitors for Treatment of Tumor Metastasis: In vivo and Mechanistic Studies on the Migrastatin Core Ether Analog. Journal of the American Chemical Society, 2010, 132, 3224-3228.	13.7	62
82	ADAMTS1 and MMP1 proteolytically engage EGF-like ligands in an osteolytic signaling cascade for bone metastasis. Genes and Development, 2009, 23, 1882-1894.	5.9	264
83	Multimodality imaging of TGFÎ ² signaling in breast cancer metastases. FASEB Journal, 2009, 23, 2662-2672.	0.5	50
84	Latent Bone Metastasis in Breast Cancer Tied to Src-Dependent Survival Signals. Cancer Cell, 2009, 16, 67-78.	16.8	609
85	Roles of TGFβ in metastasis. Cell Research, 2009, 19, 89-102.	12.0	739
86	Genes that mediate breast cancer metastasis to the brain. Nature, 2009, 459, 1005-1009.	27.8	1,587
87	Metastasis: from dissemination to organ-specific colonization. Nature Reviews Cancer, 2009, 9, 274-284.	28.4	2,287
88	WNT/TCF Signaling through LEF1 and HOXB9 Mediates Lung Adenocarcinoma Metastasis. Cell, 2009, 138, 51-62.	28.9	532
89	Nuclear CDKs Drive Smad Transcriptional Activation and Turnover in BMP and TGF- \hat{l}^2 Pathways. Cell, 2009, 139, 757-769.	28.9	627
90	Tumor Self-Seeding by Circulating Cancer Cells. Cell, 2009, 139, 1315-1326.	28.9	1,182

#	Article	IF	CITATIONS
91	Ubiquitin Ligase Nedd4L Targets Activated Smad2/3 to Limit TGF-Î ² Signaling. Molecular Cell, 2009, 36, 457-468.	9.7	306
92	Endogenous human microRNAs that suppress breast cancer metastasis. Nature, 2008, 451, 147-152.	27.8	1,743
93	Cell regulation. Current Opinion in Cell Biology, 2008, 20, 117-118.	5.4	5
94	A Very Private TGF-Î ² Receptor Embrace. Molecular Cell, 2008, 29, 149-150.	9.7	73
95	TGFÎ ² Primes Breast Tumors for Lung Metastasis Seeding through Angiopoietin-like 4. Cell, 2008, 133, 66-77.	28.9	852
96	TGFÎ ² in Cancer. Cell, 2008, 134, 215-230.	28.9	3,312
97	Molecular Basis of Metastasis. New England Journal of Medicine, 2008, 359, 2814-2823.	27.0	929
98	Genome-wide Impact of the BRG1 SWI/SNF Chromatin Remodeler on the Transforming Growth Factor \hat{l}^2 Transcriptional Program. Journal of Biological Chemistry, 2008, 283, 1146-1155.	3.4	103
99	<i>ID</i> genes mediate tumor reinitiation during breast cancer lung metastasis. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 19506-19511.	7.1	238
100	Lung metastasis genes couple breast tumor size and metastatic spread. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6740-6745.	7.1	331
101	Sorting Out Breast-Cancer Gene Signatures. New England Journal of Medicine, 2007, 356, 294-297.	27.0	121
102	Balancing BMP Signaling through Integrated Inputs into the Smad1 Linker. Molecular Cell, 2007, 25, 441-454.	9.7	381
103	Selective compounds define Hsp90 as a major inhibitor of apoptosis in small-cell lung cancer. Nature Chemical Biology, 2007, 3, 498-507.	8.0	156
104	Genetic determinants of cancer metastasis. Nature Reviews Genetics, 2007, 8, 341-352.	16.3	716
105	Beyond tumorigenesis: cancer stem cells in metastasis. Cell Research, 2007, 17, 3-14.	12.0	551
106	Mediators of vascular remodelling co-opted for sequential steps in lung metastasis. Nature, 2007, 446, 765-770.	27.8	629
107	The logic of TGFÎ ² signaling. FEBS Letters, 2006, 580, 2811-2820.	2.8	657
108	Hematopoiesis Controlled by Distinct TIF1 \hat{I}^3 and Smad4 Branches of the TGF \hat{I}^2 Pathway. Cell, 2006, 125, 929-941.	28.9	335

#	Article	IF	CITATIONS
109	Cancer Metastasis: Building a Framework. Cell, 2006, 127, 679-695.	28.9	3,702
110	Is cancer a disease of self-seeding?. Nature Medicine, 2006, 12, 875-878.	30.7	329
111	C/EBPÎ 2 at the core of the TGFÎ 2 cytostatic response and its evasion in metastatic breast cancer cells. Cancer Cell, 2006, 10, 203-214.	16.8	259
112	Dephosphorylation of the Linker Regions of Smad1 and Smad2/3 by Small C-terminal Domain Phosphatases Has Distinct Outcomes for Bone Morphogenetic Protein and Transforming Growth Factor-Î ² Pathways. Journal of Biological Chemistry, 2006, 281, 40412-40419.	3.4	147
113	A FoxO-Smad synexpression group in human keratinocytes. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12747-12752.	7.1	221
114	Unique players in the BMP pathway: Small C-terminal domain phosphatases dephosphorylate Smad1 to attenuate BMP signaling. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11940-11945.	7.1	117
115	Identifying Site-specific Metastasis Genes and Functions. Cold Spring Harbor Symposia on Quantitative Biology, 2005, 70, 149-158.	1.1	91
116	Genes that mediate breast cancer metastasis to lung. Nature, 2005, 436, 518-524.	27.8	2,581
117	TGF- \hat{l}^2 directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell, 2005, 8, 369-380.	16.8	1,057
118	Cyclin-dependent Kinase Inhibitors Uncouple Cell Cycle Progression from Mitochondrial Apoptotic Functions in DNA-damaged Cancer Cells. Journal of Biological Chemistry, 2005, 280, 32018-32025.	3.4	36
119	Smad transcription factors. Genes and Development, 2005, 19, 2783-2810.	5.9	2,063
120	Breast cancer bone metastasis mediated by the Smad tumor suppressor pathway. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13909-13914.	7.1	500
121	Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. Journal of Clinical Investigation, 2005, 115, 44-55.	8.2	606
122	Transforming growth factor \hat{I}^2 -induced cell cycle arrest of human hematopoietic cells requires p57KIP2 up-regulation. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 15231-15236.	7.1	221
123	Opposite Smad and Chicken Ovalbumin Upstream Promoter Transcription Factor Inputs in the Regulation of the Collagen VII Gene Promoter by Transforming Growth Factor-Î ² . Journal of Biological Chemistry, 2004, 279, 23759-23765.	3.4	18
124	Nucleocytoplasmic shuttling of signal transducers. Nature Reviews Molecular Cell Biology, 2004, 5, 209-219.	37.0	240
125	G1 cell-cycle control and cancer. Nature, 2004, 432, 298-306.	27.8	1,082
126	Epithelial-Mesenchymal Transitions. Cell, 2004, 118, 277-279.	28.9	1,369

#	Article	IF	Citations
127	Integration of Smad and Forkhead Pathways in the Control of Neuroepithelial and Glioblastoma Cell Proliferation. Cell, 2004, 117, 211-223.	28.9	903
128	Platelets and metastasis revisited: a novel fatty link. Journal of Clinical Investigation, 2004, 114, 1691-1693.	8.2	87
129	Platelets and metastasis revisited: a novel fatty link. Journal of Clinical Investigation, 2004, 114, 1691-1693.	8.2	55
130	A multigenic program mediating breast cancer metastasis to bone. Cancer Cell, 2003, 3, 537-549.	16.8	2,325
131	Cytostatic and apoptotic actions of TGF- \hat{l}^2 in homeostasis and cancer. Nature Reviews Cancer, 2003, 3, 807-820.	28.4	1,486
132	Mechanisms of TGF-Î ² Signaling from Cell Membrane to the Nucleus. Cell, 2003, 113, 685-700.	28.9	5,290
133	A Self-Enabling TGFβ Response Coupled to Stress Signaling. Molecular Cell, 2003, 11, 915-926.	9.7	495
134	Distinct Domain Utilization by Smad3 and Smad4 for Nucleoporin Interaction and Nuclear Import. Journal of Biological Chemistry, 2003, 278, 42569-42577.	3.4	102
135	Transforming growth factor \hat{l}^2 signaling impairs Neu-induced mammary tumorigenesis while promoting pulmonary metastasis. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 8430-8435.	7.1	409
136	Mad Upregulation and Id2 Repression Accompany Transforming Growth Factor (TGF)-Î ² -mediated Epithelial Cell Growth Suppression. Journal of Biological Chemistry, 2003, 278, 35444-35450.	3.4	85
137	Direct signaling by the BMP type II receptor via the cytoskeletal regulator LIMK1. Journal of Cell Biology, 2003, 162, 1089-1098.	5.2	292
138	Features of a Smad3 MH1-DNA Complex. Journal of Biological Chemistry, 2003, 278, 20327-20331.	3.4	64
139	Integration of Smad and MAPK pathways: a link and a linker revisited. Genes and Development, 2003, 17, 2993-2997.	5.9	201
140	Adapting a transforming growth factor $\hat{l}^2\hat{a}\in$ "related tumor protection strategy to enhance antitumor immunity. Blood, 2002, 99, 3179-3187.	1.4	310
141	Direct Binding of Smad1 and Smad4 to Two Distinct Motifs Mediates Bone Morphogenetic Protein-specific Transcriptional Activation ofId1 Gene. Journal of Biological Chemistry, 2002, 277, 3176-3185.	3.4	260
142	E2F4/5 and p107 as Smad Cofactors Linking the TGF \hat{I}^2 Receptor to c-myc Repression. Cell, 2002, 110, 19-32.	28.9	443
143	Smad2 Nucleocytoplasmic Shuttling by Nucleoporins CAN/Nup214 and Nup153 Feeds TGFÎ ² Signaling Complexes in the Cytoplasm and Nucleus. Molecular Cell, 2002, 10, 271-282.	9.7	229
144	Myc suppression of the p21Cip1 Cdk inhibitor influences the outcome of the p53 response to DNA damage. Nature, 2002, 419, 729-734.	27.8	618

#	Article	IF	CITATIONS
145	Breast cancer banishes p27 from nucleus. Nature Medicine, 2002, 8, 1076-1078.	30.7	91
146	The TGFÎ ² Receptor Activation Process. Molecular Cell, 2001, 8, 671-682.	9.7	346
147	Crystal Structure of a Phosphorylated Smad2. Molecular Cell, 2001, 8, 1277-1289.	9.7	271
148	Epidermal growth factor signaling via Ras controls the Smad transcriptional co-repressor TGIF. EMBO Journal, 2001, 20, 128-136.	7.8	147
149	Repression of p15INK4b expression by Myc through association with Miz-1. Nature Cell Biology, 2001, 3, 392-399.	10.3	504
150	$TGF\hat{l}^2$ influences Myc, Miz-1 and Smad to control the CDK inhibitor p15INK4b. Nature Cell Biology, 2001, 3, 400-408.	10.3	448
151	Defective repression of c- <i>myc</i> in breast cancer cells: A loss at the core of the transforming growth factor \hat{l}^2 growth arrest program. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 992-999.	7.1	307
152	BF-1 Interferes with Transforming Growth Factor \hat{l}^2 Signaling by Associating with Smad Partners. Molecular and Cellular Biology, 2000, 20, 6201-6211.	2.3	94
153	Mutations in TGIF cause holoprosencephaly and link NODAL signalling to human neural axis determination. Nature Genetics, 2000, 25, 205-208.	21.4	368
154	The nuclear import function of Smad2 is masked by SARA and unmasked by TGFb-dependent phosphorylation. Nature Cell Biology, 2000, 2, 559-562.	10.3	138
155	How cells read TGF-Î ² signals. Nature Reviews Molecular Cell Biology, 2000, 1, 169-178.	37.0	1,745
156	Networks of tumor suppressors. EMBO Reports, 2000, 1, 115-119.	4.5	4
157	NEW EMBO MEMBERS REVIEW: Transcriptional control by the TGF-beta/Smad signaling system. EMBO Journal, 2000, 19, 1745-1754.	7.8	1,781
158	Engagement of Bone Morphogenetic Protein Type IB Receptor and Smad1 Signaling by Anti-M $\tilde{A}^{1}/4$ llerian Hormone and Its Type II Receptor. Journal of Biological Chemistry, 2000, 275, 27973-27978.	3.4	144
159	Inhibition of the Transforming Growth Factor \hat{l}^21 Signaling Pathway by the AML1/ETO Leukemia-associated Fusion Protein. Journal of Biological Chemistry, 2000, 275, 40282-40287.	3.4	84
160	Different Sensitivity of the Transforming Growth Factor-Î ² Cell Cycle Arrest Pathway to c-Myc and MDM-2. Journal of Biological Chemistry, 2000, 275, 32066-32070.	3.4	20
161	Distinct Oligomeric States of SMAD Proteins in the Transforming Growth Factor-Î ² Pathway. Journal of Biological Chemistry, 2000, 275, 40710-40717.	3.4	102
162	TGFÎ ² Signaling in Growth Control, Cancer, and Heritable Disorders. Cell, 2000, 103, 295-309.	28.9	2,239

#	Article	IF	Citations
163	OAZ Uses Distinct DNA- and Protein-Binding Zinc Fingers in Separate BMP-Smad and Olf Signaling Pathways. Cell, 2000, 100, 229-240.	28.9	399
164	Structural Basis of Smad2 Recognition by the Smad Anchor for Receptor Activation. Science, 2000, 287, 92-97.	12.6	276
165	Controlling TGF-Î ² signaling. Genes and Development, 2000, 14, 627-644.	5.9	1,384
166	BF-1 Interferes with Transforming Growth Factor \hat{l}^2 Signaling by Associating with Smad Partners. Molecular and Cellular Biology, 2000, 20, 6201-6211.	2.3	5
167	Controlling TGF-beta signaling. Genes and Development, 2000, 14, 627-44.	5.9	1,386
168	Multiple Modes of Repression by the Smad Transcriptional Corepressor TGIF. Journal of Biological Chemistry, 1999, 274, 37105-37110.	3.4	170
169	Smad1 Recognition and Activation by the ALK1 Group of Transforming Growth Factor-Î ² Family Receptors. Journal of Biological Chemistry, 1999, 274, 3672-3677.	3.4	200
170	Smad4/DPC4 Silencing and Hyperactive Ras Jointly Disrupt Transforming Growth Factor-β Antiproliferative Responses in Colon Cancer Cells. Journal of Biological Chemistry, 1999, 274, 33637-33643.	3.4	134
171	Wounding Smad. Nature Cell Biology, 1999, 1, E117-E119.	10.3	40
172	Inhibition of transforming growth factor-β/SMAD signalling by the interferon-γ/STAT pathway. Nature, 1999, 397, 710-713.	27.8	770
173	Ubiquitin-dependent degradation of TGF-Î ² -activated Smad2. Nature Cell Biology, 1999, 1, 472-478.	10.3	321
174	Crystal Structure of the Cytoplasmic Domain of the Type I TGF \hat{I}^2 Receptor in Complex with FKBP12. Cell, 1999, 96, 425-436.	28.9	415
175	A Smad Transcriptional Corepressor. Cell, 1999, 97, 29-39.	28.9	523
176	TGF-Î ² signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. Journal of Clinical Investigation, 1999, 103, 197-206.	8.2	882
177	Physical and Functional Interaction of SMADs and p300/CBP. Journal of Biological Chemistry, 1998, 273, 22865-22868.	3.4	307
178	Carboxy-terminally truncated Gli3 proteins associate with Smads. Nature Genetics, 1998, 20, 325-326.	21.4	104
179	TGF- \hat{l}^2 singaling and cancer: structural and functional consequences of mutations in Smads. Trends in Molecular Medicine, 1998, 4, 257-262.	2.6	153
180	SMADs: mediators and regulators of TGF- \hat{l}^2 signaling. Current Opinion in Genetics and Development, 1998, 8, 103-111.	3.3	450

#	Article	IF	CITATIONS
181	Crystal Structure of a Smad MH1 Domain Bound to DNA. Cell, 1998, 94, 585-594.	28.9	929
182	TGF-Î ² SIGNAL TRANSDUCTION. Annual Review of Biochemistry, 1998, 67, 753-791.	11.1	4,586
183	Distinct Altered Patterns of p27KIP1 Gene Expression in Benign Prostatic Hyperplasia and Prostatic Carcinoma. Journal of the National Cancer Institute, 1998, 90, 1284-1291.	6.3	275
184	Differential Interaction of the Cyclin-dependent Kinase (Cdk) Inhibitor p27Kip1 with Cyclin A-Cdk2 and Cyclin D2-Cdk4. Journal of Biological Chemistry, 1997, 272, 25863-25872.	3.4	249
185	Role of the Juxtamembrane Domains of the Transforming Growth Factor- $\hat{l}\pm$ Precursor and the \hat{l}^2 -Amyloid Precursor Protein in Regulated Ectodomain Shedding. Journal of Biological Chemistry, 1997, 272, 17160-17165.	3.4	104
186	Repression of the CDK activator Cdc25A and cell-cycle arrest by cytokine TGF- \hat{l}^2 in cells lacking the CDK inhibitor p15. Nature, 1997, 387, 417-422.	27.8	356
187	Mutations increasing autoinhibition inactivate tumour suppressors Smad2 and Smad4. Nature, 1997, 388, 82-87.	27.8	345
188	A structural basis for mutational inactivation of the tumour suppressor Smad4. Nature, 1997, 388, 87-93.	27.8	436
189	Mechanism of TGFÎ ² receptor inhibition by FKBP12. EMBO Journal, 1997, 16, 3866-3876.	7.8	322
190	TGFÎ ² Signaling: Receptors, Transducers, and Mad Proteins. Cell, 1996, 85, 947-950.	28.9	860
191	Nomenclature: Vertebrate Mediators of TGFÎ ² Family Signals. Cell, 1996, 87, 173.	28.9	177
192	A human Mad protein acting as a BMP-regulated transcriptional activator. Nature, 1996, 381, 620-623.	27.8	639
193	Crossing receptor boundaries. Nature, 1996, 382, 29-30.	27.8	49
194	Crystal structure of the p27Kip1 cyclin-dependent-kinase inibitor bound to the cyclin A–Cdk2 complex. Nature, 1996, 382, 325-331.	27.8	880
195	Partnership between DPC4 and SMAD proteins in TGF-β signalling pathways. Nature, 1996, 383, 832-836.	27.8	871
196	Interaction of Transforming Growth Factor-Î ² Receptor I with Farnesyl-protein Transferase-α in Yeast and Mammalian Cells. Journal of Biological Chemistry, 1996, 271, 13931-13934.	3.4	44
197	Diverse Cell Surface Protein Ectodomains Are Shed by a System Sensitive to Metalloprotease Inhibitors. Journal of Biological Chemistry, 1996, 271, 11376-11382.	3.4	371
198	Cell-cycle inhibition by independent CDK and PCNA binding domains in p21Cip1. Nature, 1995, 375, 159-161.	27.8	530

#	Article	IF	CITATIONS
199	Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2 complex. Nature, 1995, 376, 313-320.	27.8	1,355
200	Signaling Activity of Homologous and Heterologous Transforming Growth Factor- \hat{l}^2 Receptor Kinase Complexes. Journal of Biological Chemistry, 1995, 270, 7134-7141.	3.4	71
201	Cell multiplication. Current Opinion in Cell Biology, 1995, 7, 769-772.	5.4	11
202	Drosophila Dpp signaling is mediated by the punt gene product: A dual ligand-binding type II receptor of the $TGF\hat{l}^2$ receptor family. Cell, 1995, 80, 899-908.	28.9	269
203	Mammalian anti proliferative signals and their targets. Current Opinion in Genetics and Development, 1995, 5, 91-96.	3.3	123
204	Characterization and Cloning of a Receptor for BMP-2 and BMP-4 from NIH 3T3 Cells. Molecular and Cellular Biology, 1994, 14, 5961-5974.	2.3	337
205	The TGF- \hat{I}^2 family and its composite receptors. Trends in Cell Biology, 1994, 4, 172-178.	7.9	557
206	Mechanism of activation of the TGF- \hat{l}^2 receptor. Nature, 1994, 370, 341-347.	27.8	2,237
207	Interleukin-2-mediated elimination of the p27Kipl cyclin-dependent kinase inhibitor prevented by rapamycin. Nature, 1994, 372, 570-573.	27.8	911
208	Cyclic AMP-induced G1 phase arrest mediated by an inhibitor (p27Kip1) of cyclin-dependent kinase 4 activation. Cell, 1994, 79, 487-496.	28.9	741
209	Identification of two bone morphogenetic protein type I receptors in Drosophila and evidence that Brk25D is a decapentaplegic receptor. Cell, 1994, 78, 239-250.	28.9	268
210	Characterization and relationship of dpp receptors encoded by the saxophone and thick veins genes in Drosophila. Cell, 1994, 78, 251-261.	28.9	317
211	Cloning of p27Kip1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell, 1994, 78, 59-66.	28.9	2,065
212	TGF-Î ² receptors and actions. Biochimica Et Biophysica Acta - Molecular Cell Research, 1994, 1222, 71-80.	4.1	273
213	Dexamethasone Enhancement of Betaglycan (TGF-β Type III Receptor) Gene Expression in Osteoblast-like Cells. Experimental Cell Research, 1994, 211, 301-306.	2.6	33
214	Transforming Growth Factor Receptor Gene TGFBR2 Maps to Human Chromosome Band 3p22. Genomics, 1994, 20, 114-115.	2.9	51
215	Identification and expression of two forms of the human transforming growth factorâ€Î²â€binding protein endoglin with distinct cytoplasmic regions. European Journal of Immunology, 1993, 23, 2340-2345.	2.9	201
216	The daf-4 gene encodes a bone morphogenetic protein receptor controlling C. elegans dauer larva development. Nature, 1993, 365, 644-649.	27.8	368

#	Article	IF	CITATIONS
217	Betaglycan presents ligand to the TGFÎ ² signaling receptor. Cell, 1993, 73, 1435-1444.	28.9	851
218	Membrane-Anchored Growth Factors. Annual Review of Biochemistry, 1993, 62, 515-541.	11.1	641
219	Negative regulators of growth. Current Opinion in Genetics and Development, 1992, 2, 28-32.	3.3	18
220	Novel activin receptors: Distinct genes and alternative mRNA splicing generate a repertoire of serine/threonine kinase receptors. Cell, 1992, 68, 97-108.	28.9	500
221	TGF \hat{I}^2 signals through a heteromeric protein kinase receptor complex. Cell, 1992, 71, 1003-1014.	28.9	1,465
222	Receptors for the TGF-Î ² family. Cell, 1992, 69, 1067-1070.	28.9	704
223	The cytoplasmic carboxy-terminal amino acid specifies cleavage of membrane TGF $\hat{l}\pm$ into soluble growth factor. Cell, 1992, 71, 1157-1165.	28.9	136
224	TGFâ€Î² receptors. Molecular Reproduction and Development, 1992, 32, 99-104.	2.0	113
225	Role of transforming growth factor-β in chondrogenic pattern formation in the embryonic limb: Stimulation of mesenchymal condensation and fibronectin gene expression by exogenenous TGF-β and evidence for endogenous TGF-β-like activity. Developmental Biology, 1991, 145, 99-109.	2.0	223
226	Structure and expression of the membrane proteoglycan betaglycan, a component of the TGF- \hat{l}^2 receptor system. Cell, 1991, 67, 785-795.	28.9	653
227	Transforming growth factor-α. Biochemical Society Transactions, 1991, 19, 259-262.	3.4	11
228	A helping hand from proteoglycans. Current Biology, 1991, 1, 117-119.	3.9	24
229	Mechanisms in TGFâ€Î² Action. Novartis Foundation Symposium, 1991, 157, 51-65.	1.1	11
230	TGF-? Receptors and TGF-? Binding Proteoglycans: Recent Progress in Identifying Their Functional Properties. Annals of the New York Academy of Sciences, 1990, 593, 59-72.	3.8	218
231	Growth inhibition by TGF- \hat{l}^2 linked to suppression of retinoblastoma protein phosphorylation. Cell, 1990, 62, 175-185.	28.9	791
232	The Transforming Growth Factor-beta Family. Annual Review of Cell Biology, 1990, 6, 597-641.	26.1	3,045
233	The TGF- $\hat{l}\pm$ precursor expressed on the cell surface binds to the EGF receptor on adjacent cells, leading to signal transduction. Cell, 1989, 56, 495-506.	28.9	469
234	Characterization of high molecular weight transforming growth factor .alpha. produced by rat hepatocellular carcinoma cells. Biochemistry, 1988, 27, 6487-6494.	2.5	103

#	Article	IF	CITATIONS
235	[17] Identification of receptor for type- \hat{l}^2 transforming growth factor. Methods in Enzymology, 1987, 146, 174-195.	1.0	130
236	[10] Purification of type- \hat{l}_{\pm} transforming growth factor from transformed cells. Methods in Enzymology, 1987, 146, 103-112.	1.0	3
237	[13] Identification of receptor proteins for type-α transforming growth factor. Methods in Enzymology, 1987, 146, 143-153.	1.0	8
238	The TGF-Î ² family of growth and differentiation factors. Cell, 1987, 49, 437-438.	28.9	743
239	The transforming growth factor- \hat{l}^2 system, a complex pattern of cross-reactive ligands and receptors. Cell, 1987, 48, 409-415.	28.9	715
240	Multiple type-? transforming growth factors and their receptors. Journal of Cellular Physiology, 1987, 133, 43-47.	4.1	57
241	Integral membrane glycoprotein properties of the prohormone pro-transforming growth factor-α. Nature, 1987, 326, 883-885.	27.8	101
242	Two forms of transforming growth factor- \hat{l}^2 distinguished by multipotential haematopoietic progenitor cells. Nature, 1987, 329, 539-541.	27.8	400
243	Internalization of transforming growth factor- \hat{l}^2 and its receptor in BALB/c 3T3 fibroblasts. Journal of Cellular Physiology, 1986, 128, 216-222.	4.1	78
244	Human Platelet-Derived Transforming Growth Factor- $\langle i \rangle \hat{l}^2 \langle i \rangle$ Stimulates Parameters of Bone Growth in Fetal Rat Calvariae*. Endocrinology, 1986, 119, 2306-2312.	2.8	192
245	[14] Affinity cross-linking of receptors for insulin and the insulin-like growth factors I and II. Methods in Enzymology, 1985, 109, 179-187.	1.0	13
246	Modulation of type \hat{l}_{\pm} transforming growth factor receptors by a phorbol ester tumor promoter. Journal of Cellular Biochemistry, 1985, 27, 23-30.	2.6	8
247	The transforming growth factors. Trends in Biochemical Sciences, 1985, 10, 237-240.	7.5	69
248	The insulin receptor: structural features. Trends in Biochemical Sciences, 1981, 6, 222-225.	7.5	73
249	STRUCTURAL FEATURES OF THE INSULIN EFFECTOR SYSTEM: RELATION TO HEXOSE TRANSPORT ACTIVATION. Annals of the New York Academy of Sciences, 1980, 358, 282-291.	3.8	3
250	Multiple phosphorylation of rabbit muscle glycogen synthase by glycogen synthase kinase-1. FEBS Letters, 1979, 106, 279-283.	2.8	12
251	Glycogen synthase: A new activity ratio assay expressing a high sensitivity to the phosphorylation state. FEBS Letters, 1979, 106, 284-288.	2.8	168
252	The inactivation of glycogen phosphorylase is not a prerequisite for the activation of liver glycogen synthase. FEBS Letters, 1979, 99, 321-324.	2.8	35

#	Article	lF	CITATIONS
253	Insulin control of rat hepatocyte glycogen synthase and phosphorylase in the absence of glucose. FEBS Letters, 1977, 82, 317-320.	2.8	62