
Zhiquan Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/207150/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Highly efficient RNA-guided base editing in rabbit. Nature Communications, 2018, 9, 2717.	5.8	119
2	Large-Fragment Deletions Induced by Cas9 Cleavage while Not in the BEs System. Molecular Therapy - Nucleic Acids, 2020, 21, 523-526.	2.3	48
3	CRISPR-induced exon skipping is dependent on premature termination codon mutations. Genome Biology, 2018, 19, 164.	3.8	39
4	Precise base editing with CC context-specificity using engineered human APOBEC3G-nCas9 fusions. BMC Biology, 2020, 18, 111.	1.7	28
5	Improved base editor for efficient editing in GC contexts in rabbits with an optimized AlD as9 fusion. FASEB Journal, 2019, 33, 9210-9219.	0.2	26
6	Efficient base editing by RNA-guided cytidine base editors (CBEs) in pigs. Cellular and Molecular Life Sciences, 2020, 77, 719-733.	2.4	26
7	Efficient and high-fidelity base editor with expanded PAM compatibility for cytidine dinucleotide. Science China Life Sciences, 2021, 64, 1355-1367.	2.3	26
8	Efficient base editing with high precision in rabbits using YFE-BE4max. Cell Death and Disease, 2020, 11, 36.	2.7	25
9	AcrIIA5 Suppresses Base Editors and Reduces Their Off-Target Effects. Cells, 2020, 9, 1786.	1.8	24
10	Efficient and precise base editing in rabbits using human APOBEC3A-nCas9 fusions. Cell Discovery, 2019, 5, 31.	3.1	22
11	CRISPR/Cas9-mediated mutation of tyrosinase (Tyr) 3′ UTR induce graying in rabbit. Scientific Reports, 2017, 7, 1569.	1.6	19
12	Efficient and precise generation of Tay–Sachs disease model in rabbit by prime editing system. Cell Discovery, 2021, 7, 50.	3.1	19
13	The disrupted balance between hair follicles and sebaceous glands in Hoxc13 â€ablated rabbits. FASEB Journal, 2019, 33, 1226-1234.	0.2	18
14	Highly efficient base editing with expanded targeting scope using SpCas9â€NG in rabbits. FASEB Journal, 2020, 34, 588-596.	0.2	18
15	CRISPR Start-Loss: A Novel and Practical Alternative for Gene Silencing through Base-Editing-Induced Start Codon Mutations. Molecular Therapy - Nucleic Acids, 2020, 21, 1062-1073.	2.3	16
16	Versatile and efficient inÂvivo genome editing with compact Streptococcus pasteurianus Cas9. Molecular Therapy, 2022, 30, 256-267.	3.7	16
17	Impact factors on the production of β-methylamino-L-alanine (BMAA) by cyanobacteria. Chemosphere, 2020, 243, 125355.	4.2	15
18	Compact Cje3Cas9 for Efficient <i>In Vivo</i> Genome Editing and Adenine Base Editing. CRISPR Journal, 2022, 5, 472-486.	1.4	15

Zhiquan Liu

#	Article	IF	CITATIONS
19	Efficient base editing with expanded targeting scope using an engineered Spy-mac Cas9 variant. Cell Discovery, 2019, 5, 58.	3.1	14
20	Efficient C-to-G Base Editing with Improved Target Compatibility Using Engineered Deaminase–nCas9 Fusions. CRISPR Journal, 2022, 5, 389-396.	1.4	12
21	Mutations of GADD45G in rabbits cause cleft lip by the disorder of proliferation, apoptosis and epithelial-mesenchymal transition (EMT). Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 2356-2367.	1.8	11
22	Formation kinetics of disinfection byproducts in algal-laden water during chlorination: A new insight into evaluating disinfection formation risk. Environmental Pollution, 2019, 245, 63-70.	3.7	11
23	Live imaging of RNA and RNA splicing in mammalian cells via the dcas13a-SunTag-BiFC system. Biosensors and Bioelectronics, 2022, 204, 114074.	5.3	10
24	Degradation mechanisms of cyanobacteria neurotoxin β-N-methylamino-l-alanine (BMAA) during UV254/H2O2 process: Kinetics and pathways. Chemosphere, 2022, 302, 134939.	4.2	10
25	Expanded targeting scope and enhanced base editing efficiency in rabbit using optimized xCas9(3.7). Cellular and Molecular Life Sciences, 2019, 76, 4155-4164.	2.4	7
26	Emerging investigator series: engineering membrane distillation with nanofabrication: design, performance and mechanisms. Environmental Science: Water Research and Technology, 2020, 6, 1786-1793.	1.2	7
27	Robustly improved base editing efficiency of Cpf1 base editor using optimized cytidine deaminases. Cell Discovery, 2020, 6, 62.	3.1	5
28	Inhibition of base editors with anti-deaminases derived from viruses. Nature Communications, 2022, 13, 597.	5.8	5
29	Effects and mechanism on the removal of neurotoxin \hat{I}^2 -N-methylamino-l-alanine (BMAA) by chlorination. Science of the Total Environment, 2020, 703, 135513.	3.9	3
30	Reduced off-target effect of NG-BE4max by using NG-HiFi system. Molecular Therapy - Nucleic Acids, 2021, 25, 168-172.	2.3	3
31	Disruption of NNAT , NAP1L 5 and MKRN3 DNA methylation and transcription in rabbit parthenogenetic fetuses. Gene, 2017, 626, 158-162.	1.0	2
32	DNA methylation-mediated silencing of FLT1 in parthenogenetic porcine placentas. Placenta, 2017, 58, 86-89.	0.7	2
33	Identification of differentially methylated regions (DMRs) of neuronatin in mice. SpringerPlus, 2016, 5, 2018.	1.2	0
34	Large Fragment Deletions Induced by Cas9 Cleavage While Not in BEs System in Rabbit. SSRN Electronic Journal, 0, , .	0.4	0
35	Efficient multi-nucleotide deletions using deaminase-Cas9 fusions in human cells. Journal of Genetics and Genomics, 2022, , .	1.7	0