
Izabela Czekaj

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2070823/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterization of surface processes at the Ni-based catalyst during the methanation of biomass-derived synthesis gas: X-ray photoelectron spectroscopy (XPS). Applied Catalysis A: General, 2007, 329, 68-78.	2.2	255
2	Chemical deactivation of V2O5/WO3–TiO2 SCR catalysts by additives and impurities from fuels, lubrication oils and urea solution. Applied Catalysis B: Environmental, 2008, 77, 228-236.	10.8	243
3	Sulphur poisoning of Ni catalysts in the SNG production from biomass: A TPO/XPS/XAS study. Applied Catalysis A: General, 2009, 362, 121-128.	2.2	106
4	Electrochemical Stability of Imidazolium Based Ionic Liquids Containing Cyano Groups in the Anion: A Cyclic Voltammetry, XPS and DFT Study. Journal of the Electrochemical Society, 2012, 159, H611-H615.	1.3	67
5	SnO ₂ Model Electrode Cycled in Li-Ion Battery Reveals the Formation of Li ₂ SnO ₃ and Li ₈ SnO ₆ Phases through Conversion Reactions. ACS Applied Materials & Interfaces, 2018, 10, 8712-8720.	4.0	59
6	Evaporation of Urea at Atmospheric Pressure. Journal of Physical Chemistry A, 2011, 115, 2581-2589.	1.1	48
7	The Virtue of Defects: Stable Bromine Production by Catalytic Oxidation of Hydrogen Bromide on Titanium Oxide. Angewandte Chemie - International Edition, 2014, 53, 8628-8633.	7.2	38
8	Electronic structure and oxygen vacancies in PdO and ZnO: validation of DFT models. Physical Chemistry Chemical Physics, 2011, 13, 15947.	1.3	35
9	Modelling Catalyst Surfaces Using DFT Cluster Calculations. International Journal of Molecular Sciences, 2009, 10, 4310-4329.	1.8	30
10	Adsorption and catalytic thermolysis of gaseous urea on anatase TiO2 studied by HPLC analysis, DRIFT spectroscopy and DFT calculations. Applied Catalysis B: Environmental, 2013, 134-135, 316-323.	10.8	30
11	Nickel deposition on γ-Al2O3 model catalysts: An experimental and theoretical investigation. Surface Science, 2009, 603, 2210-2217.	0.8	29
12	DFT calculations, DRIFT spectroscopy and kinetic studies on the hydrolysis of isocyanic acid on the TiO2-anatase (101) surface. Journal of Molecular Catalysis A, 2008, 280, 68-80.	4.8	28
13	Sulphur poisoning of Ni catalysts used in the SNG production from biomass: Computational studies. Catalysis Today, 2011, 176, 429-432.	2.2	23
14	DFT modeling of the hydrolysis of isocyanic acid over the TiO2 anatase (101) surface: Adsorption of HNCO species. Surface Science, 2006, 600, 5158-5167.	0.8	20
15	Decomposition of Urea in the SCR Process: Combination of DFT Calculations and Experimental Results on the Catalytic Hydrolysis of Isocyanic Acid on TiO2 and Al2O3. Topics in Catalysis, 2009, 52, 1740-1745.	1.3	19
16	CH4 combustion cycles at Pd/Al2O3 – important role of support and oxygen access. Physical Chemistry Chemical Physics, 2013, 15, 11368.	1.3	19
17	X-ray Absorption and Emission Spectroscopy of CrIII (Hydr)Oxides: Analysis of the K-Pre-Edge Region. Journal of Physical Chemistry A, 2009, 113, 12171-12178.	1.1	18
18	DFT studies of oxidation routes for Pd9 clusters supported on γ-alumina. Physical Chemistry Chemical Physics, 2012, 14, 10243.	1.3	18

Izabela Czekaj

#	Article	IF	CITATIONS
19	The Cr X-ray absorption K-edge structure of poorly crystalline Fe(III)-Cr(III)-oxyhydroxides. American Mineralogist, 2010, 95, 1202-1213.	0.9	17
20	Solving the puzzle of Li ₄ Ti ₅ O ₁₂ surface reactivity in aprotic electrolytes in Li-ion batteries by nanoscale XPEEM spectromicroscopy. Journal of Materials Chemistry A, 2018, 6, 3534-3542.	5.2	17
21	Ru/Active Carbon Catalyst: Improved Spectroscopic Data Analysis by Density Functional Theory. Journal of Physical Chemistry C, 2013, 117, 26588-26597.	1.5	16
22	Can Energetic Terahertz Pulses Initiate Surface Catalytic Reactions on the Picosecond Time Scale?. Chimia, 2011, 65, 323.	0.3	14
23	Design of Co, Cu and Fe–BEA Zeolite Catalysts for Selective Conversion of Lactic Acid into Acrylic Acid. Catalysis Letters, 2019, 149, 3349-3360.	1.4	12
24	Design, synthesis and molecular modelling of new bulky Fananserin derivatives with altered pharmacological profile as potential antidepressants. Bioorganic and Medicinal Chemistry, 2019, 27, 3396-3407.	1.4	12
25	Lactic acid conversion into acrylic acid and other products over natural and synthetic zeolite catalysts: theoretical and experimental studies. Catalysis Today, 2022, 387, 172-185.	2.2	11
26	Theoretical studies of HNCO adsorption at stabilized iron complexes in the ZSM-5 framework. Microporous and Mesoporous Materials, 2013, 169, 97-102.	2.2	10
27	Investigation of Li-Ion Solvation in Carbonate Based Electrolytes Using Near Ambient Pressure Photoemission. Topics in Catalysis, 2016, 59, 628-634.	1.3	10
28	Characteristics of the structure of natural zeolites and their potential application in catalysis and adsorption processes. Czasopismo Techniczne, 2020, , 1-20.	0.2	9
29	Experimental and Theoretical Studies of Sonically Prepared Cu–Y, Cu–USY and Cu–ZSM-5 Catalysts for SCR deNOx. Catalysts, 2021, 11, 824.	1.6	8
30	Comparison of Synthetic and Natural Zeolite Catalysts' Behavior in the Production of Lactic Acid and Ethyl Lactate from Biomass-Derived Dihydroxyacetone. Catalysts, 2021, 11, 1006.	1.6	6
31	Modelling of porous metal-organic framework (MOF) materials used in catalysis. Czasopismo Techniczne, 2020, , 1-24.	0.2	4
32	Nickel Deposition on γ-Al ₂ O ₃ : Modelling Metal Particle Behaviour at the Support. Chimia, 2009, 63, 193-196.	0.3	3
33	Raw Biogas as Feedstock for the OCM Process. Catalysts, 2022, 12, 54.	1.6	3
34	Catalytic Transformation of Biomass-Derived Glucose by One-Pot Method into Levulinic Acid over Na-BEA Zeolite. Processes, 2022, 10, 223.	1.3	3
35	Theoretical Studies of DENOx SCR over Cu-, Fe- and Mn-FAU Catalysts. Chemistry and Chemical Technology, 2021, 15, 16-25.	0.2	2
36	Theoretical Studies on the Mechanism of deNOx Process in Cu–Zn Bimetallic System—Comparison of FAU and MFI Zeolites. Molecules, 2022, 27, 300.	1.7	2

Izabela Czekaj

#	Article	IF	CITATIONS
37	The effect of the presence of a hydroxyl group on the vibration frequencies of NO and NH3 adsorbates on Cu-Zn bimetallic nanoparticles in ZSM-5 and FAU zeolite – a DFT study. Journal of Molecular Structure, 2022, 1255, 132440.	1.8	2
38	Remarkable Structural Modifications of Tialite Solid Solutions Obtained by Different Methods. Materials, 2022, 15, 3981.	1.3	2
39	Methane Catalytic Combustion on Pd9/?-Al2O3 with Different Degrees of Pd Oxidation. Chimia, 2013, 67, 271.	0.3	1
40	Vibrational Structure of Selected Compounds Derived from Biomass: Lignin Dimers, Selected Aldopentoses and Aldohexoses. Journal of Chemistry and Chemical Engineering, 2018, 12, .	0.3	1
41	Frontispiece: The Virtue of Defects: Stable Bromine Production by Catalytic Oxidation of Hydrogen Bromide on Titanium Oxide. Angewandte Chemie - International Edition, 2014, 53, .	7.2	0
42	Nano-design of Zeolites Biomass Wastes Valorization: Dehydration of Lactic Acid into Acrylic Acid. Inzynieria Mineralna, 2021, 1, .	0.2	0