
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2070742/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structurally ordered highâ€entropy intermetallic nanoparticles with enhanced C–C bond cleavage for ethanol oxidation. SmartMat, 2023, 4, .	6.4	23
2	Tailoring Competitive Adsorption Sites by Oxygenâ€Vacancy on Cobalt Oxides to Enhance the Electrooxidation of Biomass. Advanced Materials, 2022, 34, e2107185.	11.1	162
3	Dopingâ€Modulated Strain Enhancing the Phosphate Tolerance on PtFe Alloys for Highâ€Temperature Proton Exchange Membrane Fuel Cells. Advanced Functional Materials, 2022, 32, .	7.8	45
4	Recent advances in vanadium pentoxide (V ₂ O ₅) towards related applications in chromogenics and beyond: fundamentals, progress, and perspectives. Journal of Materials Chemistry C, 2022, 10, 4019-4071.	2.7	53
5	Synergy between cobalt and nickel on NiCo2O4 nanosheets promotes peroxymonosulfate activation for efficient norfloxacin degradation. Applied Catalysis B: Environmental, 2022, 306, 121091.	10.8	148
6	Boronâ€Tethering and Regulative Electronic States Around Iridium Species for Hydrogen Evolution. Advanced Functional Materials, 2022, 32, .	7.8	35
7	Concave Pt–Zn Nanocubes with Highâ€Index Faceted Pt Skin as Highly Efficient Oxygen Reduction Catalyst. Advanced Science, 2022, 9, e2200147.	5.6	25
8	Scalable Molten Salt Synthesis of Platinum Alloys Planted in Metal–Nitrogen–Graphene for Efficient Oxygen Reduction. Angewandte Chemie - International Edition, 2022, 61, .	7.2	102
9	Scalable Molten Salt Synthesis of Platinum Alloys Planted in Metal–Nitrogen–Graphene for Efficient Oxygen Reduction. Angewandte Chemie, 2022, 134, .	1.6	22
10	5f Covalency Synergistically Boosting Oxygen Evolution of UCoO ₄ Catalyst. Journal of the American Chemical Society, 2022, 144, 416-423.	6.6	48
11	Activated Ni–OH Bonds in a Catalyst Facilitates the Nucleophile Oxidation Reaction. Advanced Materials, 2022, 34, e2105320.	11.1	47
12	Atomically Dispersed Janus Nickel Sites on Red Phosphorus for Photocatalytic Overall Water Splitting. Angewandte Chemie - International Edition, 2022, 61, .	7.2	43
13	Formation of a pâ€n heterojunction photocatalyst by the interfacing of graphitic carbon nitride and delafossite <scp>CuGaO₂</scp> . Journal of the Chinese Chemical Society, 2022, 69, 1042-1050.	0.8	2
14	Formation of FePt–MgO Nanocomposite Films at Reduced Temperature. Journal of Composites Science, 2022, 6, 158.	1.4	3
15	Singleâ€Metal Atoms and Ultraâ€6mall Clusters Manipulating Charge Carrier Migration in Polymeric Perylene Diimide for Efficient Photocatalytic Oxygen Production. Advanced Energy Materials, 2022, 12,	10.2	40
16	A Facile Approach for Pt Single Atoms Deposition on Two-Dimensional Calcium Niobate Nanosheets for Photocatalytic Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2022, 10, 9096-9104.	3.2	4
17	Manipulating metal-oxygen local atomic structures in single-junctional p-Si/WO3 photocathodes for efficient solar hydrogen generation. Nano Research, 2021, 14, 2285.	5.8	14
18	Elucidation of the Synergistic Effect of Dopants and Vacancies on Promoted Selectivity for CO ₂ Electroreduction to Formate, Advanced Materials, 2021, 33, e2005113,	11.1	95

#	Article	IF	CITATIONS
19	Defects assisted structural and electrical properties of Ar ion irradiated TiO2/SrTiO3 bilayer. Materials Letters, 2021, 282, 128880.	1.3	3
20	Tuning the Selective Adsorption Site of Biomass on Co ₃ O ₄ by Ir Single Atoms for Electrosynthesis. Advanced Materials, 2021, 33, e2007056.	11.1	217
21	Catalytically Active Site Identification of Molybdenum Disulfide as Gas Cathode in a Nonaqueous Li–CO ₂ Battery. ACS Applied Materials & Interfaces, 2021, 13, 6156-6167.	4.0	18
22	Fe ²⁺ â€induced In Situ Intercalation and Cation Exsolution of Co ₈₀ Fe ₂₀ (OH)(OCH ₃) with Rich Vacancies for Boosting Oxygen Evolution Reaction. Advanced Functional Materials, 2021, 31, 2009245.	7.8	38
23	Significant role of substrate temperature on the morphology, electronic structure and thermoelectric properties of SrTiO3 films deposited by pulsed laser deposition. Surface and Coatings Technology, 2021, 407, 126740.	2.2	6
24	Unveiling the Electrooxidation of Urea: Intramolecular Coupling of the Nâ^'N Bond. Angewandte Chemie, 2021, 133, 7373-7383.	1.6	24
25	Unveiling the Electrooxidation of Urea: Intramolecular Coupling of the Nâ^N Bond. Angewandte Chemie - International Edition, 2021, 60, 7297-7307.	7.2	204
26	Boron-doped nitrogen-deficient carbon nitride-based Z-scheme heterostructures for photocatalytic overall water splitting. Nature Energy, 2021, 6, 388-397.	19.8	764
27	AuPd Nanoicosahedra: Atomic-Level Surface Modulation for Optimization of Electrocatalytic and Photocatalytic Energy Conversion. ACS Applied Energy Materials, 2021, 4, 2652-2662.	2.5	4
28	Proton Capture Strategy for Enhancing Electrochemical CO ₂ Reduction on Atomically Dispersed Metal–Nitrogen Active Sites**. Angewandte Chemie, 2021, 133, 12066-12072.	1.6	25
29	Probing reversal of orbital symmetry in CaCu3-xTi4-xFe2xO12 (x = 0.0–0.7) by X-ray absorption spectroscopy. Journal of Materials Science: Materials in Electronics, 2021, 32, 13630-13638.	1.1	1
30	Proton Capture Strategy for Enhancing Electrochemical CO ₂ Reduction on Atomically Dispersed Metal–Nitrogen Active Sites**. Angewandte Chemie - International Edition, 2021, 60, 11959-11965.	7.2	144
31	Tailoring lattice strain in ultra-fine high-entropy alloys for active and stable methanol oxidation. Science China Materials, 2021, 64, 2454-2466.	3.5	43
32	Photo generated charge transport studies of defects-induced shuttlecock-shaped ZnO/Ag hybrid nanostructures. Nanotechnology, 2021, 32, 305708.	1.3	5
33	Controlled Magnetic Isolation and Decoupling of Perpendicular FePt Films by Capping Ultrathin Cu(002) Nano-Islands. Journal of Composites Science, 2021, 5, 140.	1.4	3
34	Sequential tunability of red and white light emissions in Sm-activated ZnO phosphors by up- and downconversion mechanisms. Journal of Applied Physics, 2021, 129, .	1.1	4
35	Role of Interfacial Defects in Photoelectrochemical Properties of BiVO4 Coated on ZnO Nanodendrites: X-ray Spectroscopic and Microscopic Investigation. ACS Applied Materials & Interfaces, 2021, 13, 41524-41536.	4.0	2
36	In Situ/Operando Capturing Unusual Ir ⁶⁺ Facilitating Ultrafast Electrocatalytic Water Oxidation. Advanced Functional Materials, 2021, 31, 2104746.	7.8	29

CHIN-JUNG LIN

#	Article	IF	CITATIONS
37	An integrated bioelectrochemical system coupled CO2 electroreduction device based on atomically dispersed iron electrocatalysts. Nano Energy, 2021, 87, 106187.	8.2	23
38	Structural evolution and Au nanoparticles enhanced photocatalytic activity of sea-urchin-like TiO2 microspheres: An X-ray absorption spectroscopy study. Applied Surface Science, 2021, 562, 150127.	3.1	8
39	Extended Graphite Supported Flower-like MnO2 as Bifunctional Materials for Supercapacitors and Glucose Sensing. Nanomaterials, 2021, 11, 2881.	1.9	4
40	Understanding the role of structural distortions on the transport properties of Ar ion irradiated SrTiO3 thin films: X-ray absorption investigation. Journal of Applied Physics, 2021, 130, .	1.1	1
41	<i>A</i> '– <i>B</i> Intersite Cooperation-Enhanced Water Splitting in Quadruple Perovskite Oxide CaCu ₃ I ₄ O ₁₂ . Chemistry of Materials, 2021, 33, 9295-9305.	3.2	11
42	Multicycle Performance of CaTiO3 Decorated CaO-Based CO2 Adsorbent Prepared by a Versatile Aerosol Assisted Self-Assembly Method. Nanomaterials, 2021, 11, 3188.	1.9	2
43	Surface Electronic Structure Reconfiguration of Hematite Nanorods for Efficient Photoanodic Water Oxidation. Solar Rrl, 2020, 4, 1900349.	3.1	30
44	A [001]â€Oriented Hittorf's Phosphorus Nanorods/Polymeric Carbon Nitride Heterostructure for Boosting Wideâ€Spectrumâ€Responsive Photocatalytic Hydrogen Evolution from Pure Water. Angewandte Chemie - International Edition, 2020, 59, 868-873.	7.2	164
45	Electronic and atomic structure of TiO2 anatase spines on sea-urchin-like microspheres by X-ray absorption spectroscopy. Applied Surface Science, 2020, 502, 144297.	3.1	18
46	A [001]â€Oriented Hittorf's Phosphorus Nanorods/Polymeric Carbon Nitride Heterostructure for Boosting Wideâ€Spectrumâ€Responsive Photocatalytic Hydrogen Evolution from Pure Water. Angewandte Chemie, 2020, 132, 878-883.	1.6	40
47	Operando Spectral and Electrochemical Investigation into the Heterophase Stimulated Active Species Transformation in Transition-Metal Sulfides for Efficient Electrocatalytic Oxygen Evolution. ACS Catalysis, 2020, 10, 1855-1864.	5.5	113
48	Interlayer ligand engineering of β-Ni(OH)2 for oxygen evolution reaction. Science China Chemistry, 2020, 63, 1684-1693.	4.2	15
49	Excitation induced enhancement of spectral response and energy transfer mechanisms in Fe/Sm modified ZnO phosphors. Journal of Applied Physics, 2020, 128, 143104.	1.1	4
50	Identifying the Geometric Site Dependence of Spinel Oxides for the Electrooxidation of 5â€Hydroxymethylfurfural. Angewandte Chemie - International Edition, 2020, 59, 19215-19221.	7.2	211
51	ldentifying the Geometric Site Dependence of Spinel Oxides for the Electrooxidation of 5â€Hydroxymethylfurfural. Angewandte Chemie, 2020, 132, 19377-19383.	1.6	41
52	Probing the active site in single-atom oxygen reduction catalysts via operando X-ray and electrochemical spectroscopy. Nature Communications, 2020, 11, 4233.	5.8	80
53	Regulating Crystal Structure and Atomic Arrangement in Single-Component Metal Oxides through Electrochemical Conversion for Efficient Overall Water Splitting. ACS Applied Materials & Interfaces, 2020, 12, 57038-57046.	4.0	15
54	Controllable synthesis of Fe–N ₄ species for acidic oxygen reduction. , 2020, 2, 452-460.		50

#	Article	IF	CITATIONS
55	Hierarchically nanostructured NiO-Co3O4 with rich interface defects for the electro-oxidation of 5-hydroxymethylfurfural. Science China Chemistry, 2020, 63, 980-986.	4.2	85
56	<i>Operando</i> Identification of the Dynamic Behavior of Oxygen Vacancy-Rich Co ₃ O ₄ for Oxygen Evolution Reaction. Journal of the American Chemical Society, 2020, 142, 12087-12095.	6.6	736
57	Critical Factors Controlling Superoxide Reactions in Lithium–Oxygen Batteries. ACS Energy Letters, 2020, 5, 1355-1363.	8.8	37
58	Utilizing ion leaching effects for achieving high oxygen-evolving performance on hybrid nanocomposite with self-optimized behaviors. Nature Communications, 2020, 11, 3376.	5.8	122
59	Influence of halide ions on the structure and properties of copper indium sulphide quantum dots. Chemical Communications, 2020, 56, 3341-3344.	2.2	6
60	Controlling the Oxidation State of the Cu Electrode and Reaction Intermediates for Electrochemical CO ₂ Reduction to Ethylene. Journal of the American Chemical Society, 2020, 142, 2857-2867.	6.6	342
61	Voltage- and time-dependent valence state transition in cobalt oxide catalysts during the oxygen evolution reaction. Nature Communications, 2020, 11, 1984.	5.8	120
62	In Situ Exfoliation and Pt Deposition of Antimonene for Formic Acid Oxidation via a Predominant Dehydrogenation Pathway. Research, 2020, 2020, 5487237.	2.8	10
63	In Situ Observation of the Insulator-To-Metal Transition and Nonequilibrium Phase Transition for Li _{1–<i>x</i>} CoO ₂ Films with Preferred (003) Orientation Nanorods. ACS Applied Materials & Interfaces, 2019, 11, 33043-33053.	4.0	14
64	Screening highly active perovskites for hydrogen-evolving reaction via unifying ionic electronegativity descriptor. Nature Communications, 2019, 10, 3755.	5.8	139
65	Rapid adsorption of industrial pollutants using metal ion doped hydroxyapatite. AIP Conference Proceedings, 2019, , .	0.3	10
66	Electronically Coupled Uranium and Iron Oxide Heterojunctions as Efficient Water Oxidation Catalysts. Advanced Functional Materials, 2019, 29, 1905005.	7.8	18
67	Synergy of Dopants and Defects in Graphitic Carbon Nitride with Exceptionally Modulated Band Structures for Efficient Photocatalytic Oxygen Evolution. Advanced Materials, 2019, 31, e1903545.	11.1	604
68	Tuning the Electrical and Thermoelectric Properties of N Ion Implanted SrTiO3 Thin Films and Their Conduction Mechanisms. Scientific Reports, 2019, 9, 14486.	1.6	30
69	Quinary Defect-Rich Ultrathin Bimetal Hydroxide Nanosheets for Water Oxidation. ACS Applied Materials & amp; Interfaces, 2019, 11, 44018-44025.	4.0	15
70	Plasmonic Nanoparticles: Plasmon-Enhanced Electrocatalytic Properties of Rationally Designed Hybrid Nanostructures at a Catalytic Interface (Adv. Mater. Interfaces 2/2019). Advanced Materials Interfaces, 2019, 6, 1970011.	1.9	0
71	Zirconiumâ€Regulationâ€Induced Bifunctionality in 3D Cobalt–Iron Oxide Nanosheets for Overall Water Splitting. Advanced Materials, 2019, 31, e1901439.	11.1	306
72	Modulating the electronic structure of ultrathin layered double hydroxide nanosheets with fluorine: an efficient electrocatalyst for the oxygen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 14483-14488.	5.2	73

CHIN-JUNG LIN

#	Article	IF	CITATIONS
73	Morphology Manipulation of Copper Nanocrystals and Product Selectivity in the Electrocatalytic Reduction of Carbon Dioxide. ACS Catalysis, 2019, 9, 5217-5222.	5.5	105
74	Au-BINOL Hybrid Nanocatalysts: Insights into the Structure-Based Enhancement of Catalytic and Photocatalytic Performance. Industrial & Engineering Chemistry Research, 2019, 58, 5479-5489.	1.8	4
75	Probing the Active Sites of Carbonâ€Encapsulated Cobalt Nanoparticles for Oxygen Reduction. Small Methods, 2019, 3, 1800439.	4.6	33
76	Defectsâ€Induced Inâ€Plane Heterophase in Cobalt Oxide Nanosheets for Oxygen Evolution Reaction. Small, 2019, 15, e1904903.	5.2	69
77	Tuning the Coordination Environment in Single-Atom Catalysts to Achieve Highly Efficient Oxygen Reduction Reactions. Journal of the American Chemical Society, 2019, 141, 20118-20126.	6.6	683
78	Identifying the crystal and electronic structure evolution in triâ€component transition metal oxide nanosheets for efficient electrocatalytic oxygen evolution. EcoMat, 2019, 1, e12005.	6.8	14
79	Effect of Fe ion implantation on the thermoelectric properties and electronic structures of CoSb ₃ thin films. RSC Advances, 2019, 9, 36113-36122.	1.7	17
80	Defectâ€Induced Pt–Co–Se Coordinated Sites with Highly Asymmetrical Electronic Distribution for Boosting Oxygenâ€Involving Electrocatalysis. Advanced Materials, 2019, 31, e1805581.	11.1	168
81	Plasmonâ€Enhanced Electrocatalytic Properties of Rationally Designed Hybrid Nanostructures at a Catalytic Interface. Advanced Materials Interfaces, 2019, 6, 1801144.	1.9	24
82	The Role of the Copper Oxidation State in the Electrocatalytic Reduction of CO ₂ into Valuable Hydrocarbons. ACS Sustainable Chemistry and Engineering, 2019, 7, 1485-1492.	3.2	121
83	Selective adsorption of greenhouse gases on the residual carbon in lignite coal liquefaction. Journal of the Taiwan Institute of Chemical Engineers, 2018, 85, 170-175.	2.7	7
84	Plasmon-Induced Visible-Light Photocatalytic Activity of Au Nanoparticle-Decorated Hollow Mesoporous TiO ₂ : A View by X-ray Spectroscopy. Journal of Physical Chemistry C, 2018, 122, 6955-6962.	1.5	25
85	The Electro-Deposition/Dissolution of CuSO ₄ Aqueous Electrolyte Investigated by <i>In Situ</i> Soft X-ray Absorption Spectroscopy. Journal of Physical Chemistry B, 2018, 122, 780-787.	1.2	26
86	Engineering the coordination geometry of metal–organic complex electrocatalysts for highly enhanced oxygen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 805-810.	5.2	69
87	Uranium Oxide Nanocrystals by Microwaveâ€Assisted Thermal Decomposition: Electronic and Structural Properties. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2018, 644, 12-18.	0.6	8
88	Enhancing Solarâ€Driven Water Splitting with Surfaceâ€Engineered Nanostructures. Solar Rrl, 2018, 3, 1800285.	3.1	5
89	Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nature Catalysis, 2018, 1, 985-992.	16.1	1,236
90	In Situ/Operando Xâ€ray Spectroscopies for Advanced Investigation of Energy Materials. Chemistry - A European Journal, 2018, 24, 18356-18373.	1.7	43

#	Article	IF	CITATIONS
91	Structure and Transport Properties of Nickel-Implanted CoSb ₃ Skutterudite Thin Films Synthesized via Pulsed Laser Deposition. ACS Applied Energy Materials, 2018, 1, 5879-5886.	2.5	8
92	Preferential Cation Vacancies in Perovskite Hydroxide for the Oxygen Evolution Reaction. Angewandte Chemie, 2018, 130, 8827-8832.	1.6	37
93	Preferential Cation Vacancies in Perovskite Hydroxide for the Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2018, 57, 8691-8696.	7.2	337
94	Evolution of Visible Photocatalytic Properties of Cu-Doped CeO ₂ Nanoparticles: Role of Cu ²⁺ -Mediated Oxygen Vacancies and the Mixed-Valence States of Ce Ions. ACS Sustainable Chemistry and Engineering, 2018, 6, 8536-8546.	3.2	55
95	Electronic Structure Evolution in Tricomponent Metal Phosphides with Reduced Activation Energy for Efficient Electrocatalytic Oxygen Evolution. Small, 2018, 14, e1801756.	5.2	69
96	Activating KlÃ ¤ i-Type Organometallic Precursors at Metal Oxide Surfaces for Enhanced Solar Water Oxidation. ACS Energy Letters, 2018, 3, 1613-1619.	8.8	33
97	(Invited) In Situ/Operando Investigations of Energy Materials with Soft and Hard X-Ray Spectroscopy. ECS Meeting Abstracts, 2018, , .	0.0	Ο
98	X-ray Absorption Spectroscopic Study on Interfacial Electronic Properties of FeOOH/Reduced Graphene Oxide for Asymmetric Supercapacitors. ACS Sustainable Chemistry and Engineering, 2017, 5, 3186-3194.	3.2	17
99	Investigation of adsorption of methylene blue from aqueous phase onto coal-based activated carbons. Journal of the Chinese Institute of Engineers, Transactions of the Chinese Institute of Engineers,Series A/Chung-kuo Kung Ch'eng Hsuch K'an, 2017, 40, 355-360.	0.6	5
100	Molecular Design of Polymer Heterojunctions for Efficient Solar–Hydrogen Conversion. Advanced Materials, 2017, 29, 1606198.	11.1	203
101	Filling the oxygen vacancies in Co ₃ O ₄ with phosphorus: an ultra-efficient electrocatalyst for overall water splitting. Energy and Environmental Science, 2017, 10, 2563-2569.	15.6	859
102	Atomicâ€Scale CoO <i>_x</i> Species in Metal–Organic Frameworks for Oxygen Evolution Reaction. Advanced Functional Materials, 2017, 27, 1702546.	7.8	327
103	Electrochemically Activated Reduced Graphene Oxide Used as Solid-State Symmetric Supercapacitor: An X-ray Absorption Spectroscopic Investigation. Journal of Physical Chemistry C, 2016, 120, 22134-22141.	1.5	33
104	Synergistic-Effect-Controlled CoTe ₂ /Carbon Nanotube Hybrid Material for Efficient Water Oxidation. Journal of Physical Chemistry C, 2016, 120, 28093-28099.	1.5	39
105	Nbâ€Doped Hematite Nanorods for Efficient Solar Water Splitting: Electronic Structure Evolution versus Morphology Alteration. ChemNanoMat, 2016, 2, 704-711.	1.5	51
106	Nanogap Engineered Plasmonâ€Enhancement in Photocatalytic Solar Hydrogen Conversion. Advanced Materials Interfaces, 2015, 2, 1500280.	1.9	55
107	Mechanism of Electrochemical Deposition and Coloration of Electrochromic V2O5 Nano Thin Films: an In Situ X-Ray Spectroscopy Study. Nanoscale Research Letters, 2015, 10, 387.	3.1	38
108	Electronic properties of free-standing TiO ₂ nanotube arrays fabricated by electrochemical anodization. Physical Chemistry Chemical Physics, 2015, 17, 22064-22071.	1.3	42

#	Article	IF	CITATIONS
109	Adsorption isotherms and kinetics of activated carbons produced from coals of different ranks. Water Science and Technology, 2015, 71, 1189-1195.	1.2	6
110	Heterojunction of Zinc Blende/Wurtzite in Zn _{1–<i>x</i>} Cd _{<i>x</i>} S Solid Solution for Efficient Solar Hydrogen Generation: X-ray Absorption/Diffraction Approaches. ACS Applied Materials & Interfaces, 2015, 7, 22558-22569.	4.0	74
111	An integrated cobalt disulfide (CoS ₂) co-catalyst passivation layer on silicon microwires for photoelectrochemical hydrogen evolution. Journal of Materials Chemistry A, 2015, 3, 23466-23476.	5.2	68
112	Ordered mesostructured Cu-doped TiO2 spheres as active visible-light-driven photocatalysts for degradation of paracetamol. Chemical Engineering Journal, 2014, 237, 131-137.	6.6	62
113	Preparation of N- <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">id="M1"><mml:mrow><mml:msub><mml:mrow><mml:mtext>TiO</mml:mtext></mml:mrow><mml:mtext>2a Microwave/Sol-Gel Method and Its Photocatalytic Activity for Bisphenol A under Visible-Light and Sunlight Irradiation. International Journal of Photoenergy, 2013, 2013, 1-9.</mml:mtext></mml:msub></mml:mrow></mml:math>	ml:mtext> 1.4	
114	Mesoporous Fe-doped TiO2 sub-microspheres with enhanced photocatalytic activity under visible light illumination. Applied Catalysis B: Environmental, 2012, 127, 175-181.	10.8	48
115	Atomically Dispersed Janus Nickel Sites on Red Phosphorus for Photocatalytic Overall Water Splitting. Angewandte Chemie, 0, , .	1.6	2