Takuro Ito

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/20706/publications.pdf

Version: 2024-02-01

		236612	223531
57	2,271	25	46
papers	citations	h-index	g-index
58	58	58	2862
all docs	docs citations	times ranked	
an docs	does citations	tilles raliked	citing authors

#	Article	IF	CITATIONS
1	Intelligent Image-Activated Cell Sorting. Cell, 2018, 175, 266-276.e13.	13.5	395
2	Label-free chemical imaging flow cytometry by high-speed multicolor stimulated Raman scattering. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15842-15848.	3.3	130
3	Raman image-activated cell sorting. Nature Communications, 2020, 11, 3452.	5.8	116
4	High-throughput imaging flow cytometry by optofluidic time-stretch microscopy. Nature Protocols, 2018, 13, 1603-1631.	5.5	112
5	Probing the metabolic heterogeneity of live Euglena gracilis with stimulated Raman scattering microscopy. Nature Microbiology, 2016, 1, 16124.	5.9	105
6	High-throughput label-free molecular fingerprinting flow cytometry. Science Advances, 2019, 5, eaau0241.	4.7	102
7	Ultrafast confocal fluorescence microscopy beyond the fluorescence lifetime limit. Optica, 2018, 5, 117.	4.8	93
8	Virtual-freezing fluorescence imaging flow cytometry. Nature Communications, 2020, 11, 1162.	5.8	93
9	Global metabolic network reorganization by adaptive mutations allows fast growth of Escherichia coli on glycerol. Nature Communications, 2014, 5, 3233.	5.8	80
10	Metabolic and morphological changes of an oil accumulating trebouxiophycean alga in nitrogen-deficient conditions. Metabolomics, 2013, 9, 178-187.	1.4	72
11	A practical guide to intelligent image-activated cell sorting. Nature Protocols, 2019, 14, 2370-2415.	5.5	71
12	Label-free detection of aggregated platelets in blood by machine-learning-aided optofluidic time-stretch microscopy. Lab on A Chip, 2017, 17, 2426-2434.	3.1	65
13	Highâ€throughput, labelâ€free, singleâ€cell, microalgal lipid screening by machineâ€learningâ€equipped optofluidic timeâ€stretch quantitative phase microscopy. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2017, 91, 494-502.	1.1	60
14	Sequentially addressable dielectrophoretic array for high-throughput sorting of large-volume biological compartments. Science Advances, 2020, 6, eaba6712.	4.7	56
15	Polypyrrole-Modified Tips for Functional Group Recognition in Scanning Tunneling Microscopy. Analytical Chemistry, 1999, 71, 1699-1705.	3.2	54
16	Effects of High CO2 on Growth and Metabolism of Arabidopsis Seedlings During Growth with a Constantly Limited Supply of Nitrogen. Plant and Cell Physiology, 2014, 55, 281-292.	1.5	51
17	Spatiotemporal expression of duplicate AGAMOUS orthologues during floral development in Phalaenopsis. Development Genes and Evolution, 2006, 216, 301-313.	0.4	44
18	Recharacterization of Chlamydomonas reinhardtii and its relatives with new isolates from Japan. Journal of Plant Research, 2010, 123, 67-78.	1.2	43

#	Article	IF	Citations
19	Isolation of a subfamily of genes for R2R3-MYB transcription factors showing up-regulated expression under nitrogen nutrient-limited conditions. Plant Molecular Biology, 2003, 53, 237-245.	2.0	37
20	High-Speed Imaging Meets Single-Cell Analysis. CheM, 2018, 4, 2278-2300.	5.8	37
21	Development of Sex-linked Primers in Garden Asparagus (Asparagus officinalis L.). Breeding Science, 2006, 56, 327-330.	0.9	35
22	Optofluidic time-stretch quantitative phase microscopy. Methods, 2018, 136, 116-125.	1.9	35
23	On-chip light-sheet fluorescence imaging flow cytometry at a high flow speed of $1\mathrm{m/s}$. Biomedical Optics Express, 2018, 9, 3424.	1.5	35
24	High-throughput label-free image cytometry and image-based classification of live Euglena gracilis. Biomedical Optics Express, 2016, 7, 2703.	1.5	34
25	Isolating Single <i>Euglena gracilis</i> Cells by Glass Microfluidics for Raman Analysis of Paramylon Biogenesis. Analytical Chemistry, 2019, 91, 9631-9639.	3.2	27
26	Patterns of population structure and complex haplotype sharing among field isolates of the green algaChlamydomonas reinhardtii. Molecular Ecology, 2019, 28, 3977-3993.	2.0	23
27	High-Throughput Accurate Single-Cell Screening of Euglena gracilis with Fluorescence-Assisted Optofluidic Time-Stretch Microscopy. PLoS ONE, 2016, 11, e0166214.	1.1	23
28	Production and characterization of interspecific hybrids between Asparagus kiusianus Makino and A. officinalis L Euphytica, 2011, 182, 285.	0.6	19
29	AVAG2 is a putative D-class gene from an ornamental asparagus. Sexual Plant Reproduction, 2004, 17, 107.	2.2	18
30	Molecular phylogeny and evolution of alcohol dehydrogenase (Adh) genes in legumes. BMC Plant Biology, 2005, 5, 6.	1.6	16
31	Random BAC FISH of monocot plants reveals differential distribution of repetitive DNA elements in small and large chromosome species. Plant Cell Reports, 2012, 31, 621-628.	2.8	16
32	Alteration of fatty acid chain length of <i>Chlamydomonas reinhardtii</i> by simultaneous expression of mediumâ€chainâ€specific thioesterase and acyl carrier protein. Phycological Research, 2017, 65, 94-99.	0.8	16
33	Targeted delivery of fluorogenic peptide aptamers into live microalgae by femtosecond laser photoporation at single-cell resolution. Scientific Reports, 2018, 8, 8271.	1.6	16
34	POTENTIAL OF INTERSPECIFIC HYBRIDS IN THE GENUS ASPARAGUS. Acta Horticulturae, 2008, , 279-284.	0.1	15
35	The AVAG1 gene is involved in development of reproductive organs in the ornamental asparagus, Asparagus virgatus. Sexual Plant Reproduction, 2004, 17, 1-8.	2.2	14
36	Production and analysis of reciprocal hybrids between Asparagus officinalis L. and A. schoberioides Kunth. Genetic Resources and Crop Evolution, 2007, 54, 1063-1071.	0.8	14

#	Article	IF	CITATIONS
37	A major isoform of mitochondrial trans-2-enoyl-CoA reductase is dispensable for wax ester production in Euglena gracilis under anaerobic conditions. PLoS ONE, 2019, 14, e0210755.	1.1	13
38	Acoustofluidic harvesting of microalgae on a single chip. Biomicrofluidics, 2016, 10, 034119.	1.2	12
39	Time-resolved metabolomics of a novel trebouxiophycean alga using 13CO2 feeding. Journal of Bioscience and Bioengineering, 2013, 116, 408-415.	1.1	11
40	The structure and expression of SEPALLATA-like genes in Asparagus species (Asparagaceae). Sexual Plant Reproduction, 2006, 19, 133-144.	2.2	10
41	Monitoring Photosynthetic Activity in Microalgal Cells by Raman Spectroscopy with Deuterium Oxide as a Tracking Probe. ChemBioChem, 2017, 18, 2063-2068.	1.3	9
42	Genomic organization of the AODEF gene in Asparagus officinalis L Genes and Genetic Systems, 2005, 80, 95-103.	0.2	8
43	Expression analysis of an APETALA1/FRUITFULL-like gene in Phalaenopsis sp. †Hatsuyuki' (Orchidaceae). Horticulture Environment and Biotechnology, 2011, 52, 183-195.	0.7	6
44	Hybridization between <scp>J</scp> apanese and <scp>N</scp> orth <scp>A</scp> merican <i><scp>C</scp>hlamydomonas reinhardtii</i> (<scp>V</scp> olvocales, <scp>C</scp> hlorophyceae). Phycological Research, 2014, 62, 232-236.	0.8	6
45	Comparing with Phylogenetic Trees Inferred from cpDNA, ITS Sequences and RAPD Analysis in the Genus Asparagus (Asparagaceae). Environmental Control in Biology, 2012, 50, 13-18.	0.3	6
46	Mechanism of glass ampoule breakage prevention during the freeze-drying process of sodium thiopental lyophilization products on addition of sodium chloride. Journal of Thermal Analysis and Calorimetry, 2006, 85, 731-739.	2.0	4
47	Technology for Developing Super Microalgal Biofuels. Seibutsu Butsuri, 2017, 57, 235-239.	0.0	4
48	Spatiotemporal monitoring of intracellular metabolic dynamics by resonance Raman microscopy with isotope labeling. RSC Advances, 2020, 10, 16679-16686.	1.7	4
49	Probing the Biogenesis of Polysaccharide Granules in Algal Cells at Sub-Organellar Resolution via Raman Microscopy with Stable Isotope Labeling. Analytical Chemistry, 2021, 93, 16796-16803.	3.2	3
50	High-throughput, label-free, multivariate cell analysis with optofluidic time-stretch microscopy. , 2017, , .		2
51	High-throughput label-free screening of euglena gracilis with optofluidic time-stretch quantitative phase microscopy. , 2017, , .		1
52	Metabolomics Reveal the Overview of Lipid Accumulation Mechanism in Oil-rich Microalgae. Oleoscience, 2014, 14, 337-342.	0.0	0
53	High-throughput optofluidic profiling of <i>Euglena gracilis</i> with morphological and chemical specificity. Proceedings of SPIE, 2016, , .	0.8	0
54	High-speed stimulated Raman scattering microscopy for studying the metabolic diversity of motile Euglena gracilis. Proceedings of SPIE, 2017, , .	0.8	0

Takuro Ito

#	Article	IF	CITATIONS
55	High-throughput single-cell image analysis of living Euglena gracilis for efficient biofuel production. , 2016, , .		O
56	Optofluidic time-stretch quantitative phase microscopy for high-throughput label-free single-cell analysis (Conference Presentation). , 2017, , .		O
57	High-throughput label-free detection of aggregate platelets with optofluidic time-stretch microscopy (Conference Presentation). , 2017 , , .		O