Jeffrey Prinzie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2070031/publications.pdf

Version: 2024-02-01

		1039880	940416
38	316	9	16
papers	citations	h-index	g-index
39	39	39	178
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Radiation-Tolerant Digitally Controlled Ring Oscillator in 65-nm CMOS. IEEE Transactions on Nuclear Science, 2022, 69, 17-25.	1.2	8
2	Improvements of portable energy dispersive Xâ€ray fluorescence instrument: Resolution with <scp>Silicon Drift Detector</scp> , measurements stability using pyroelectric sources, and adaptation for space use. X-Ray Spectrometry, 2022, 51, 388-393.	0.9	3
3	Low-power electronic technologies for harsh radiation environments. Nature Electronics, 2021, 4, 243-253.	13.1	39
4	Study of SEU Sensitivity of SRAM-Based Radiation Monitors in 65-nm CMOS. IEEE Transactions on Nuclear Science, 2021, 68, 913-920.	1,2	14
5	A Review of Semiconductor Based Ionising Radiation Sensors Used in Harsh Radiation Environments and Their Applications. Radiation, 2021, 1, 194-217.	0.6	24
6	Tradeoffs in Time-to-Digital Converter Architectures for Harsh Radiation Environments. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-10.	2.4	5
7	Single-Event Effect Responses of Integrated Planar Inductors in 65-nm CMOS. IEEE Transactions on Nuclear Science, 2021, 68, 2587-2597.	1.2	7
8	Radiation-Tolerant All-Digital PLL/CDR with Varactorless LC DCO in 65 nm CMOS. Electronics (Switzerland), 2021, 10, 2741.	1.8	5
9	A Low Noise Fault Tolerant Radiation Hardened 2.56 Gbps Clock-Data Recovery Circuit With High Speed Feed Forward Correction in 65 nm CMOS. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67, 1438-1446.	3.5	11
10	Novel Full TMR Placement Techniques for High-Speed Radiation Tolerant Digital Integrated Circuits. Electronics (Switzerland), 2020, 9, 1936.	1.8	2
11	Characterization of a gigabit transceiver for the ATLAS inner tracker pixel detector readout upgrade. Journal of Instrumentation, 2020, 15, T03005-T03005.	0.5	5
12	Methods for clock signal characterization using FPGA resources. Journal of Instrumentation, 2020, 15, P03012-P03012.	0.5	1
13	A Fast Locking 5.8–7.2-GHz Fractional-N Synthesizer With Sub-2-us Settling in 22-nm FDSOI. IEEE Solid-State Circuits Letters, 2020, 3, 546-549.	1.3	4
14	The lpGBT PLL and CDR Architecture, Performance and SEE Robustness. , 2020, , .		12
15	Design of a 4 ps radiation hardened TDC with an improved interpolation technique. , 2020, , .		1
16	Time-Dependent Single-Event Effects in CMOS \$LC\$ -Oscillators. IEEE Transactions on Nuclear Science, 2019, 66, 2048-2054.	1.2	4
17	A gigabit transceiver for the ATLAS inner tracker pixel detector readout upgrade. Journal of Instrumentation, 2019, 14, C07005-C07005.	0.5	3
18	Radiation Assessment of a 15.6ps Single-Shot Time-to-Digital Converter in Terms of TID. Electronics (Switzerland), 2019, 8, 558.	1.8	7

#	Article	IF	Citations
19	Optimal Physical Implementation of Radiation Tolerant High-Speed Digital Integrated Circuits in Deep-Submicron Technologies. Electronics (Switzerland), 2019, 8, 432.	1.8	9
20	A Low Noise Fault Tolerant Radiation Hardened 2.56 Gbps Clock-Data Recovery Circuit with High Speed Feed Forward Correction in 65 nm CMOS., 2019,,.		5
21	Single Event Transients in CMOS Ring Oscillators. Electronics (Switzerland), 2019, 8, 618.	1.8	4
22	An SRAM-Based Radiation Monitor With Dynamic Voltage Control in 0.18- <inline-formula> <tex-math notation="LaTeX">\$mu\$ </tex-math> </inline-formula> m CMOS Technology. IEEE Transactions on Nuclear Science, 2019, 66, 282-289.	1.2	14
23	Radiation Hardened CMOS Integrated Circuits for Time-Based Signal Processing. Analog Circuits and Signal Processing Series, 2018, , .	0.3	2
24	A 2.56-GHz SEU Radiation Hard \$LC\$ -Tank VCO for High-Speed Communication Links in 65-nm CMOS Technology. IEEE Transactions on Nuclear Science, 2018, 65, 407-412.	1.2	34
25	Radiation Effects in CMOS Technology. Analog Circuits and Signal Processing Series, 2018, , 1-20.	0.3	5
26	Radiation Tolerant, Low Noise Phase Locked Loops in 65 nm CMOS Technology. EPJ Web of Conferences, 2018, 170, 01021.	0.1	1
27	Time-Domain Signal Processing. Analog Circuits and Signal Processing Series, 2018, , 21-42.	0.3	O
28	Low Jitter Clock Generators. Analog Circuits and Signal Processing Series, 2018, , 97-121.	0.3	0
29	Clock Synthesizers. Analog Circuits and Signal Processing Series, 2018, , 43-70.	0.3	O
30	Single Shot Time-to-Digital Converters. Analog Circuits and Signal Processing Series, 2018, , 71-96.	0.3	0
31	Radiation Experiments on CMOS PLLs. Analog Circuits and Signal Processing Series, 2018, , 123-143.	0.3	O
32	Radiation Hard Frequency Synthesizers. Analog Circuits and Signal Processing Series, 2018, , 145-154.	0.3	0
33	Comparison of a 65 nm CMOS Ring- and LC-Oscillator Based PLL in Terms of TID and SEU Sensitivity. IEEE Transactions on Nuclear Science, 2017, 64, 245-252.	1.2	46
34	A single-event upset robust, 2.2 GHz to 3.2 GHz, 345 fs jitter PLL with triple-modular redundant phase detector in 65 nm CMOS. , 2016 , , .		18
35	A low noise clock generator for high-resolution time-to-digital convertors. Journal of Instrumentation, 2016, 11, C02038-C02038.	0.5	4
36	A Self-Calibrated Bang–Bang Phase Detector for Low-Offset Time Signal Processing. IEEE Transactions on Circuits and Systems II: Express Briefs, 2016, 63, 453-457.	2.2	10

#	Article	IF	CITATIONS
37	Experimental validation of a compact model for EM reflection and transmission in multi-layered structures., 2015,,.		O
38	A single shot TDC with 4.8 ps resolution in 40 nm CMOS for high energy physics applications. Journal of Instrumentation, 2015, 10, C01031-C01031.	0.5	9