Mark W Irvine

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2069976/publications.pdf Version: 2024-02-01

MADE WIDVINE

#	Article	IF	CITATIONS
1	Pharmacological characterization of a novel negative allosteric modulator of NMDA receptors, UBP792. Neuropharmacology, 2021, 201, 108818.	4.1	0
2	Structural basis of subtype-selective competitive antagonism for GluN2C/2D-containing NMDA receptors. Nature Communications, 2020, 11, 423.	12.8	19
3	Investigation of the structural requirements for N-methyl-D-aspartate receptor positive and negative allosteric modulators based on 2-naphthoic acid. European Journal of Medicinal Chemistry, 2019, 164, 471-498.	5.5	10
4	The NMDA receptor intracellular C-terminal domains reciprocally interact with allosteric modulators. Biochemical Pharmacology, 2019, 159, 140-153.	4.4	13
5	Positive and Negative Allosteric Modulators of <i>N</i> -Methyl- <scp>d</scp> -aspartate (NMDA) Receptors: Structure–Activity Relationships and Mechanisms of Action. Journal of Medicinal Chemistry, 2019, 62, 3-23.	6.4	44
6	The Startle Disease Mutation E103K Impairs Activation of Human Homomeric α1 Glycine Receptors by Disrupting an Intersubunit Salt Bridge across the Agonist Binding Site. Journal of Biological Chemistry, 2017, 292, 5031-5042.	3.4	8
7	Mechanism and properties of positive allosteric modulation of N -methyl- d -aspartate receptors by 6-alkyl 2-naphthoic acid derivatives. Neuropharmacology, 2017, 125, 64-79.	4.1	15
8	A single-channel mechanism for pharmacological potentiation of GluN1/GluN2A NMDA receptors. Scientific Reports, 2017, 7, 6933.	3.3	7
9	Multiple roles of GluN2B-containing NMDA receptors in synaptic plasticity in juvenile hippocampus. Neuropharmacology, 2017, 112, 76-83.	4.1	33
10	An interchangeable role for kainate and metabotropic glutamate receptors in the induction of rat hippocampal mossy fiber longâ€ŧerm potentiation in vivo. Hippocampus, 2015, 25, 1407-1417.	1.9	5
11	Synthesis of a Series of Novel 3,9-Disubstituted Phenanthrenes as Analogues of Known N-Methyl-d-aspartate Receptor Allosteric Modulators. Synthesis, 2015, 47, 1593-1610.	2.3	9
12	Gating Effects of a Novel Allosteric Modulator at GluN1/GluN2A NMDA Receptors. FASEB Journal, 2015, 29, 933.3.	0.5	0
13	Different NMDA receptor subtypes mediate induction of longâ€ŧerm potentiation and two forms of shortâ€ŧerm potentiation at CA1 synapses in rat hippocampus <i>in vitro</i> . Journal of Physiology, 2013, 591, 955-972.	2.9	83
14	The NMDA receptor as a target for cognitive enhancement. Neuropharmacology, 2013, 64, 13-26.	4.1	206
15	Piperazine-2,3-dicarboxylic Acid Derivatives as Dual Antagonists of NMDA and GluK1-Containing Kainate Receptors. Journal of Medicinal Chemistry, 2012, 55, 327-341.	6.4	19
16	Structure-activity relationships for allosteric NMDA receptor inhibitors based on 2-naphthoic acid. Neuropharmacology, 2012, 62, 1730-1736.	4.1	33
17	Coumarin-3-carboxylic acid derivatives as potentiators and inhibitors of recombinant and native N-methyl-d-aspartate receptors. Neurochemistry International, 2012, 61, 593-600.	3.8	37
18	A Novel Family of Negative and Positive Allosteric Modulators of NMDA Receptors. Journal of Pharmacology and Experimental Therapeutics, 2010, 335, 614-621.	2.5	80

#	Article	IF	CITATIONS
19	<i>N</i> -Methyl-d-aspartate (NMDA) Receptor NR2 Subunit Selectivity of a Series of Novel Piperazine-2,3-dicarboxylate Derivatives: Preferential Blockade of Extrasynaptic NMDA Receptors in the Rat Hippocampal CA3-CA1 Synapse. Journal of Pharmacology and Experimental Therapeutics, 2009, 331, 618-626.	2.5	46
20	Rhodanine derivatives as novel inhibitors of PDE4. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 2032-2037.	2.2	50