Mark W Irvine

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2069976/publications.pdf

Version: 2024-02-01

858243 939365 20 717 12 18 citations h-index g-index papers 20 20 20 1113 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Pharmacological characterization of a novel negative allosteric modulator of NMDA receptors, UBP792. Neuropharmacology, 2021, 201, 108818.	2.0	O
2	Structural basis of subtype-selective competitive antagonism for GluN2C/2D-containing NMDA receptors. Nature Communications, 2020, 11, 423.	5 . 8	19
3	Investigation of the structural requirements for N-methyl-D-aspartate receptor positive and negative allosteric modulators based on 2-naphthoic acid. European Journal of Medicinal Chemistry, 2019, 164, 471-498.	2.6	10
4	The NMDA receptor intracellular C-terminal domains reciprocally interact with allosteric modulators. Biochemical Pharmacology, 2019, 159, 140-153.	2.0	13
5	Positive and Negative Allosteric Modulators of <i>N</i> NHethyl- <scp>d</scp> -aspartate (NMDA) Receptors: Structure–Activity Relationships and Mechanisms of Action. Journal of Medicinal Chemistry, 2019, 62, 3-23.	2.9	44
6	The Startle Disease Mutation E103K Impairs Activation of Human Homomeric $\hat{l}\pm 1$ Glycine Receptors by Disrupting an Intersubunit Salt Bridge across the Agonist Binding Site. Journal of Biological Chemistry, 2017, 292, 5031-5042.	1.6	8
7	Mechanism and properties of positive allosteric modulation of N -methyl- d -aspartate receptors by 6-alkyl 2-naphthoic acid derivatives. Neuropharmacology, 2017, 125, 64-79.	2.0	15
8	A single-channel mechanism for pharmacological potentiation of GluN1/GluN2A NMDA receptors. Scientific Reports, 2017, 7, 6933.	1.6	7
9	Multiple roles of GluN2B-containing NMDA receptors in synaptic plasticity in juvenile hippocampus. Neuropharmacology, 2017, 112, 76-83.	2.0	33
10	An interchangeable role for kainate and metabotropic glutamate receptors in the induction of rat hippocampal mossy fiber longâ€ŧerm potentiation in vivo. Hippocampus, 2015, 25, 1407-1417.	0.9	5
11	Synthesis of a Series of Novel 3,9-Disubstituted Phenanthrenes as Analogues of Known N-Methyl-d-aspartate Receptor Allosteric Modulators. Synthesis, 2015, 47, 1593-1610.	1.2	9
12	Gating Effects of a Novel Allosteric Modulator at GluN1/GluN2A NMDA Receptors. FASEB Journal, 2015, 29, 933.3.	0.2	0
13	Different NMDA receptor subtypes mediate induction of longâ€term potentiation and two forms of shortâ€term potentiation at CA1 synapses in rat hippocampus ⟨i⟩in vitro⟨/i⟩. Journal of Physiology, 2013, 591, 955-972.	1.3	83
14	The NMDA receptor as a target for cognitive enhancement. Neuropharmacology, 2013, 64, 13-26.	2.0	206
15	Piperazine-2,3-dicarboxylic Acid Derivatives as Dual Antagonists of NMDA and GluK1-Containing Kainate Receptors. Journal of Medicinal Chemistry, 2012, 55, 327-341.	2.9	19
16	Structure-activity relationships for allosteric NMDA receptor inhibitors based on 2-naphthoic acid. Neuropharmacology, 2012, 62, 1730-1736.	2.0	33
17	Coumarin-3-carboxylic acid derivatives as potentiators and inhibitors of recombinant and native N-methyl-d-aspartate receptors. Neurochemistry International, 2012, 61, 593-600.	1.9	37
18	A Novel Family of Negative and Positive Allosteric Modulators of NMDA Receptors. Journal of Pharmacology and Experimental Therapeutics, 2010, 335, 614-621.	1.3	80

#	Article	IF	CITATIONS
19	<i>N</i> -Methyl-d-aspartate (NMDA) Receptor NR2 Subunit Selectivity of a Series of Novel Piperazine-2,3-dicarboxylate Derivatives: Preferential Blockade of Extrasynaptic NMDA Receptors in the Rat Hippocampal CA3-CA1 Synapse. Journal of Pharmacology and Experimental Therapeutics, 2009, 331, 618-626.	1.3	46
20	Rhodanine derivatives as novel inhibitors of PDE4. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 2032-2037.	1.0	50