
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2069686/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Superior Lowâ€Cost Cathode for a Naâ€ion Battery. Angewandte Chemie - International Edition, 2013, 52, 1964-1967.	13.8	698
2	Nanosized Metal Phosphides Embedded in Nitrogenâ€Đoped Porous Carbon Nanofibers for Enhanced Hydrogen Evolution at All pH Values. Angewandte Chemie - International Edition, 2018, 57, 1963-1967.	13.8	277
3	Exploration of K ₂ Ti ₈ O ₁₇ as an anode material for potassium-ion batteries. Chemical Communications, 2016, 52, 11274-11276.	4.1	240
4	Honeycomb‣ike Spherical Cathode Host Constructed from Hollow Metallic and Polar Co ₉ S ₈ Tubules for Advanced Lithium–Sulfur Batteries. Advanced Functional Materials, 2018, 28, 1704443.	14.9	236
5	Doubleâ€5helled NiOâ€NiCo ₂ O ₄ Heterostructure@Carbon Hollow Nanocages as an Efficient Sulfur Host for Advanced Lithium–Sulfur Batteries. Advanced Energy Materials, 2018, 8, 1800709.	19.5	236
6	Investigation of K ₃ V ₂ (PO ₄) ₃ /C nanocomposites as high-potential cathode materials for potassium-ion batteries. Chemical Communications, 2017, 53, 1805-1808.	4.1	206
7	Nanocubic KTi ₂ (PO ₄) ₃ electrodes for potassium-ion batteries. Chemical Communications, 2016, 52, 11661-11664.	4.1	189
8	MXenes for Nonâ€Lithiumâ€lon (Na, K, Ca, Mg, and Al) Batteries and Supercapacitors. Advanced Energy Materials, 2021, 11, 2000681.	19.5	183
9	â€ [–] Circuit board-like CoS/MXene composite with superior performance for sodium storage. Chemical Engineering Journal, 2019, 357, 220-225.	12.7	143
10	Na3V2O2(PO4)2F/graphene sandwich structure for high-performance cathode of a sodium-ion battery. Physical Chemistry Chemical Physics, 2013, 15, 13032.	2.8	128
11	Electrochemical deposition of metal–organic framework films and their applications. Journal of Materials Chemistry A, 2020, 8, 7569-7587.	10.3	126
12	Synthesis of SnS nanoparticle-modified MXene (Ti3C2Tx) composites for enhanced sodium storage. Journal of Alloys and Compounds, 2018, 732, 448-453.	5.5	121
13	A review on pyrophosphate framework cathode materials for sodium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 15006-15025.	10.3	117
14	How to avoid dendrite formation in metal batteries: Innovative strategies for dendrite suppression. Nano Energy, 2021, 86, 106142.	16.0	116
15	Assembling Hollow Cobalt Sulfide Nanocages Array on Graphene-like Manganese Dioxide Nanosheets for Superior Electrochemical Capacitors. ACS Applied Materials & Interfaces, 2017, 9, 35040-35047.	8.0	107
16	Selenium Embedded in Metal–Organic Framework Derived Hollow Hierarchical Porous Carbon Spheres for Advanced Lithium–Selenium Batteries. ACS Applied Materials & Interfaces, 2016, 8, 16063-16070.	8.0	106
17	Design and Construction of Sodium Polysulfides Defense System for Roomâ€Temperature Na–S Battery. Advanced Science, 2019, 6, 1901557.	11.2	106
18	Facile Synthesis of Novel Networked Ultralong Cobalt Sulfide Nanotubes and Its Application in Supercapacitors, ACS Applied Materials & amp: Interfaces, 2015, 7, 25568-25573	8.0	105

#	Article	IF	CITATIONS
19	Metal chalcogenide hollow polar bipyramid prisms as efficient sulfur hosts for Na-S batteries. Nature Communications, 2020, 11, 5242.	12.8	102
20	A Mini-Review: MXene composites for sodium/potassium-ion batteries. Nanoscale, 2020, 12, 15993-16007.	5.6	102
21	A highly efficient double-hierarchical sulfur host for advanced lithium–sulfur batteries. Chemical Science, 2018, 9, 666-675.	7.4	97
22	Reunderstanding the Reaction Mechanism of Aqueous Zn–Mn Batteries with Sulfate Electrolytes: Role of the Zinc Sulfate Hydroxide. Advanced Materials, 2022, 34, e2109092.	21.0	97
23	Uniform α-Ni(OH)2 hollow spheres constructed from ultrathin nanosheets as efficient polysulfide mediator for long-term lithium-sulfur batteries. Energy Storage Materials, 2017, 8, 202-208.	18.0	93
24	Exploration of NaVOPO4 as a cathode for a Na-ion battery. Chemical Communications, 2013, 49, 5280.	4.1	85
25	Self-Supported FeCo ₂ S ₄ Nanotube Arrays as Binder-Free Cathodes for Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2018, 10, 43707-43715.	8.0	75
26	MXene-derivative pompon-like Na2Ti3O7@C anode material for advanced sodium ion batteries. Chemical Engineering Journal, 2019, 378, 122209.	12.7	75
27	Na _{3.12} Fe _{2.44} (P ₂ O ₇) ₂ /multi-walled carbon nanotube composite as a cathode material for sodium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 17224-17229.	10.3	74
28	Solvent-mediated directionally self-assembling MoS ₂ nanosheets into a novel worm-like structure and its application in sodium batteries. Journal of Materials Chemistry A, 2015, 3, 9932-9937.	10.3	74
29	Chinese knot-like electrode design for advanced Li-S batteries. Nano Energy, 2018, 53, 354-361.	16.0	72
30	A Fe3N/carbon composite electrocatalyst for effective polysulfides regulation in room-temperature Na-S batteries. Nature Communications, 2021, 12, 6347.	12.8	71
31	Nickel Hollow Spheres Concatenated by Nitrogenâ€Đoped Carbon Fibers for Enhancing Electrochemical Kinetics of Sodium–Sulfur Batteries. Advanced Science, 2020, 7, 1902617.	11.2	70
32	Selenium Encapsulated into Metal–Organic Frameworks Derived N-Doped Porous Carbon Polyhedrons as Cathode for Na–Se Batteries. ACS Applied Materials & Interfaces, 2017, 9, 41339-41346.	8.0	69
33	TiOxNy nanoparticles/C composites derived from MXene as anode material for potassium-ion batteries. Chemical Engineering Journal, 2019, 369, 828-833.	12.7	68
34	A chemically bonded CoNiO2 nanoparticles/MXene composite as anode for sodium-ion batteries. Materials Letters, 2018, 230, 173-176.	2.6	65
35	Lowâ€Operating Temperature, Highâ€Rate and Durable Solid‣tate Sodiumâ€Ion Battery Based on Polymer Electrolyte and Prussian Blue Cathode. Advanced Energy Materials, 2020, 10, 1903351.	19.5	64
36	Carbon nanotubes implanted manganese-based MOFs for simultaneous detection of biomolecules in body fluids. Analyst, The, 2016, 141, 1279-1285.	3.5	62

#	Article	IF	CITATIONS
37	2D MXene Materials for Sodium Ion Batteries: A review on Energy Storage. Journal of Energy Storage, 2021, 37, 102478.	8.1	62
38	A railway-like network electrode design for room temperature Na–S battery. Journal of Materials Chemistry A, 2019, 7, 150-156.	10.3	60
39	Nanostructured cobalt phosphates as excellent biomimetic enzymes to sensitively detect superoxide anions released from living cells. Biosensors and Bioelectronics, 2017, 87, 998-1004.	10.1	59
40	MoP nanoparticles with a P-rich outermost atomic layer embedded in N-doped porous carbon nanofibers: Self-supported electrodes for efficient hydrogen generation. Nano Research, 2018, 11, 4728-4734.	10.4	59
41	Preparation of MoS ₂ /Ti ₃ C ₂ T _x composite as anode material with enhanced sodium/lithium storage performance. Inorganic Chemistry Frontiers, 2019, 6, 117-125.	6.0	59
42	Rational construction of rGO/VO2 nanoflowers as sulfur multifunctional hosts for room temperature Na-S batteries. Chemical Engineering Journal, 2020, 379, 122359.	12.7	59
43	Nanosized Metal Phosphides Embedded in Nitrogenâ€Doped Porous Carbon Nanofibers for Enhanced Hydrogen Evolution at All pH Values. Angewandte Chemie, 2018, 130, 1981-1985.	2.0	58
44	Synthesis and application of ultra-long Na _{0.44} MnO ₂ submicron slabs as a cathode material for Na-ion batteries. RSC Advances, 2014, 4, 38140-38143.	3.6	57
45	Investigation of Fe ₂ N@carbon encapsulated in N-doped graphene-like carbon as a catalyst in sustainable zinc–air batteries. Catalysis Science and Technology, 2017, 7, 5670-5676.	4.1	56
46	Engineering the nanostructure of molybdenum nitride nanodot embedded N-doped porous hollow carbon nanochains for rapid all pH hydrogen evolution. Journal of Materials Chemistry A, 2018, 6, 14734-14741.	10.3	56
47	Highly Puffed Co ₉ S ₈ /Carbon Nanofibers: A Functionalized S Carrier for Superior Li–S Batteries. ACS Applied Materials & Interfaces, 2019, 11, 26798-26806.	8.0	55
48	Critical Role of Phosphorus in Hollow Structures Cobaltâ€Based Phosphides as Bifunctional Catalysts for Water Splitting. Small, 2022, 18, e2103561.	10.0	54
49	Maximizing Energy Storage of Flexible Aqueous Batteries through Decoupling Charge Carriers. Advanced Energy Materials, 2021, 11, 2003982.	19.5	53
50	Porous graphene to encapsulate Na _{6.24} Fe _{4.88} (P ₂ O ₇) ₄ as composite cathode materials for Na-ion batteries. Chemical Communications, 2015, 51, 13120-13122.	4.1	51
51	MXene-derived three-dimensional carbon nanotube network encapsulate CoS ₂ nanoparticles as an anode material for solid-state sodium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 3018-3026.	10.3	51
52	A gel-limiting strategy for large-scale fabrication of Fe–N–C single-atom ORR catalysts. Journal of Materials Chemistry A, 2021, 9, 7137-7142.	10.3	51
53	Puzzle-inspired carbon dots coupled with cobalt phosphide for constructing a highly-effective overall water splitting interface. Chemical Communications, 2020, 56, 257-260.	4.1	48
54	Fabrication of WS2-nanoflowers@rGO composite as an anode material for enhanced electrode performance in lithium-ion batteries. Journal of Colloid and Interface Science, 2017, 488, 20-25.	9.4	47

#	Article	IF	CITATIONS
55	Rechargeable K-Se batteries based on metal-organic-frameworks-derived porous carbon matrix confined selenium as cathode materials. Journal of Colloid and Interface Science, 2019, 539, 326-331.	9.4	47
56	Detailed investigation of a NaTi ₂ (PO ₄) ₃ anode prepared by pyro-synthesis for Na-ion batteries. RSC Advances, 2016, 6, 45605-45611.	3.6	46
57	Putting Nanoarmors on Yolk–Shell Si@C Nanoparticles: A Reliable Engineering Way To Build Better Si-Based Anodes for Li-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 24157-24163.	8.0	46
58	A rough endoplasmic reticulum-like VSe ₂ /rGO anode for superior sodium-ion capacitors. Inorganic Chemistry Frontiers, 2019, 6, 2935-2943.	6.0	46
59	A Se-hollow porous carbon composite for high-performance rechargeable K–Se batteries. Inorganic Chemistry Frontiers, 2019, 6, 2118-2125.	6.0	46
60	Construction of a bimetallic nickel–cobalt selenide pompon used as a superior anode material for high performance sodium storage. Inorganic Chemistry Frontiers, 2020, 7, 1003-1011.	6.0	46
61	Design and synthesis of Co–N–C porous catalyst derived from metal organic complexes for highly effective ORR. Dalton Transactions, 2017, 46, 15646-15650.	3.3	44
62	Potassium titanium hexacyanoferrate as a cathode material for potassium-ion batteries. Journal of Physics and Chemistry of Solids, 2018, 122, 31-35.	4.0	43
63	Electrospun graphene-wrapped Na _{6.24} Fe _{4.88} (P ₂ O ₇) ₄ nanofibers as a high-performance cathode for sodium-ion batteries. Physical Chemistry Chemical Physics, 2017, 19, 17270-17277	2.8	42
64	Self-Supported CdP ₂ –CDs–CoP for High-Performance OER Catalysts. ACS Sustainable Chemistry and Engineering, 2021, 9, 1297-1303.	6.7	42
65	Sodium-Rich Ferric Pyrophosphate Cathode for Stationary Room-Temperature Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 502-508.	8.0	41
66	Interfacial engineering of Ni/V2O3 for hydrogen evolution reaction. Nano Research, 2020, 13, 2407-2412.	10.4	41
67	Muscle-like electrode design for Li-Te batteries. Energy Storage Materials, 2018, 10, 10-15.	18.0	40
68	Double-walled N-doped carbon@NiCo ₂ S ₄ hollow capsules as SeS ₂ hosts for advanced Li–SeS ₂ batteries. Journal of Materials Chemistry A, 2019, 7, 12276-12282.	10.3	40
69	Nanoporous V-Doped Ni ₅ P ₄ Microsphere: A Highly Efficient Electrocatalyst for Hydrogen Evolution Reaction at All pH. ACS Applied Materials & Interfaces, 2020, 12, 37092-37099.	8.0	40
70	A synergistic Bi ₂ S ₃ /MXene composite with enhanced performance as an anode material of sodium-ion batteries. New Journal of Chemistry, 2020, 44, 3072-3077.	2.8	40
71	A 3D porous interconnected NaVPO ₄ F/C network: preparation and performance for Na-ion batteries. RSC Advances, 2015, 5, 40065-40069.	3.6	39
72	Efficient Catalytic Conversion of Polysulfides by Biomimetic Design of "Branch-Leaf―Electrode for High-Energy Sodium–Sulfur Batteries. Nano-Micro Letters, 2021, 13, 50.	27.0	39

#	Article	IF	CITATIONS
73	Improving the Performance of Hard Carbon//Na ₃ V ₂ O ₂ (PO ₄) ₂ F Sodium-Ion Full Cells by Utilizing the Adsorption Process of Hard Carbon. ACS Applied Materials & Interfaces, 2018, 10, 16581-16587.	8.0	37
74	Vanadium carbide nanoparticles incorporation in carbon nanofibers for room-temperature sodium sulfur batteries: Confining, trapping, and catalyzing. Chemical Engineering Journal, 2020, 395, 124978.	12.7	37
75	High performance mesoporous C@Se composite cathodes derived from Ni-based MOFs for Li–Se batteries. RSC Advances, 2015, 5, 84038-84043.	3.6	36
76	A highly-effective nitrogen-doped porous carbon sponge electrode for advanced K–Se batteries. Inorganic Chemistry Frontiers, 2020, 7, 1182-1189.	6.0	36
77	An N-doped porous carbon/MXene composite as a sulfur host for lithium–sulfur batteries. Inorganic Chemistry Frontiers, 2019, 6, 2894-2899.	6.0	35
78	Facile preparation of nitrogen-doped reduced graphene oxide as a metal-free catalyst for oxygen reduction reaction. Journal of Materials Science, 2013, 48, 8101-8107.	3.7	34
79	Cobalt nanoparticles embedded into free-standing carbon nanofibers as catalyst for room-temperature sodium-sulfur batteries. Journal of Colloid and Interface Science, 2020, 565, 63-69.	9.4	34
80	Highly Efficient Sodiumâ€Ion Storage Enabled by an rGOâ€Wrapped FeSe ₂ Composite. ChemSusChem, 2021, 14, 1336-1343.	6.8	34
81	An excellent full sodium-ion capacitor derived from a single Ti-based metal–organic framework. Journal of Materials Chemistry A, 2018, 6, 24860-24868.	10.3	33
82	An MXene-based aerogel with cobalt nanoparticles as an efficient sulfur host for room-temperature Na–S batteries. Inorganic Chemistry Frontiers, 2020, 7, 4396-4403.	6.0	33
83	A Prussian blue analogue as a long-life cathode for liquid-state and solid-state sodium-ion batteries. Inorganic Chemistry Frontiers, 2020, 7, 3938-3944.	6.0	33
84	Manipulating irreversible phase transition of NaCrO2 towards an effective sodium compensation additive for superior sodium-ion full cells. Journal of Colloid and Interface Science, 2019, 553, 524-529.	9.4	32
85	Jackfruit-like electrode design for advanced Na-Se batteries. Journal of Power Sources, 2019, 443, 227245.	7.8	32
86	Carbon-wrapped cobalt nanoparticles on graphene aerogel for solid-state room-temperature sodium-sulfur batteries. Chemical Engineering Journal, 2020, 388, 124210.	12.7	32
87	A Strategy for Polysulfides/Polyselenides Protection Based on Co ₉ S ₈ @SiO ₂ /C Host in Na‣eS ₂ Batteries. Advanced Functional Materials, 2021, 31, 2001952.	14.9	32
88	An architectural development for energy conversion materials: morphology-conserved transformation synthesis of manganese oxides and their application in lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 3749.	10.3	31
89	Efficient Production of Coaxial Core–Shell MnO@Carbon Nanopipes for Sustainable Electrochemical Energy Storage Applications. ACS Sustainable Chemistry and Engineering, 2017, 5, 6288-6296.	6.7	31
90	(001) Facet-Dominated Hierarchically Hollow Na ₂ Ti ₃ O ₇ as a High-Rate Anode Material for Sodium-Ion Capacitors. ACS Applied Materials & Interfaces, 2019, 11, 42197-42205.	8.0	31

#	Article	IF	CITATIONS
91	High-Rate and Long-Life Sodium-Ion Batteries Based on Sponge-like Three-Dimensional Porous Na-Rich Ferric Pyrophosphate Cathode Material. ACS Applied Materials & Interfaces, 2019, 11, 5107-5113.	8.0	30
92	Exploration of a calcium–organic framework as an anode material for sodium-ion batteries. Chemical Communications, 2016, 52, 9969-9971.	4.1	29
93	FeF ₃ @Thin Nickel Ammine Nitrate Matrix: Smart Configurations and Applications as Superior Cathodes for Li-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 16240-16247.	8.0	29
94	Rib-like hierarchical porous carbon as reservoir for long-life and high-rate Li-Te batteries. Electrochimica Acta, 2017, 250, 10-15.	5.2	29
95	Synthesis of hollow porous carbon microspheres and their application to room-temperature Na-S batteries. Materials Letters, 2018, 221, 66-69.	2.6	29
96	Constructing high effective nano-Mn3(PO4)2-chitosan in situ electrochemical detection interface for superoxide anions released from living cell. Biosensors and Bioelectronics, 2019, 133, 133-140.	10.1	29
97	Cathodic Electrodeposition of MOF Films Using Hydrogen Peroxide. Angewandte Chemie - International Edition, 2021, 60, 24950-24957.	13.8	29
98	A self-healing neutral aqueous rechargeable Zn/MnO2 battery based on modified carbon nanotubes substrate cathode. Journal of Colloid and Interface Science, 2021, 600, 83-89.	9.4	29
99	MnO ₂ -assisted fabrication of PANI/MWCNT composite and its application as a supercapacitor. RSC Advances, 2014, 4, 33569-33573.	3.6	28
100	Facile synthesis of mesoporous NH4V4O10 nanoflowers with high performance as cathode material for lithium battery. Journal of Materials Science, 2018, 53, 2045-2053.	3.7	28
101	Effects of Catalysis and Separator Functionalization on Highâ€Energy Lithium–Sulfur Batteries: A Complete Review. Energy and Environmental Materials, 2023, 6, .	12.8	28
102	Curtailing Carbon Usage with Addition of Functionalized NiFe2O4 Quantum Dots: Toward More Practical S Cathodes for Li–S Cells. Nano-Micro Letters, 2020, 12, 145.	27.0	27
103	Lowâ€Barrier, Dendriteâ€Free, and Stable Na Plating/Stripping Enabled by Gradient Sodiophilic Carbon Skeleton. Advanced Energy Materials, 2021, 11, .	19.5	27
104	Enabling fast-charging selenium-based aqueous batteries via conversion reaction with copper ions. Nature Communications, 2022, 13, 1863.	12.8	27
105	Self-Template Synthesis of Prussian Blue Analogue Hollow Polyhedrons as Superior Sodium Storage Cathodes. ACS Applied Materials & Interfaces, 2021, 13, 37187-37193.	8.0	26
106	Sulfur encapsulation into yolk-shell Fe2N@nitrogen doped carbon for ambient-temperature sodium-sulfur battery cathode. Chemical Engineering Journal, 2022, 429, 132389.	12.7	26
107	Exploration of Na ₇ Fe _{4.5} (P ₂ O ₇) ₄ as a cathode material for sodium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 16531-16535.	10.3	25
108	Metal organic framework MIL-53(Fe) as an efficient artificial oxidase for colorimetric detection of cellular biothiols. Analytical Biochemistry, 2019, 577, 82-88.	2.4	25

MAO-WEN XU

#	Article	IF	CITATIONS
109	Flexible electrode constructed by encapsulating ultrafine VSe2 in carbon fiber for quasi-solid-state sodium ion batteries. Journal of Power Sources, 2020, 470, 228438.	7.8	25
110	A Cascade Battery: Coupling Two Sequential Electrochemical Reactions in a Single Battery. Advanced Materials, 2021, 33, e2105480.	21.0	25
111	Design and synthesis of carbonized polypyrrole-coated graphene aerogel acting as an efficient metal-free catalyst for oxygen reduction. RSC Advances, 2014, 4, 16979-16984.	3.6	24
112	A selenium-confined porous carbon cathode from silk cocoons for Li–Se battery applications. RSC Advances, 2015, 5, 96146-96150.	3.6	24
113	Enhanced electrochemical performance of Na _{0.5} Ni _{0.25} Mn _{0.75} O ₂ micro-sheets at 3.8 V for Na-ion batteries with nanosized-thin AlF ₃ coating. Nanoscale, 2018, 10, 12625-12630.	5.6	24
114	Facile and Scale Synthesis of Co/N/S-Doped Porous Graphene-Like Carbon Architectures as Electrocatalysts for Sustainable Zinc-Air Battery Cells. ACS Sustainable Chemistry and Engineering, 2019, 7, 7743-7749.	6.7	24
115	Facile synthesis of Cu2S nanoplates as anode for potassium ion batteries. Materials Letters, 2020, 262, 127048.	2.6	24
116	Multi-step Controllable Catalysis Method for the Defense of Sodium Polysulfide Dissolution in Room-Temperature Na–S Batteries. ACS Applied Materials & Interfaces, 2021, 13, 11852-11860.	8.0	24
117	Pyro-synthesis of a nanostructured NaTi2(PO4)3/C with a novel lower voltage plateau for rechargeable sodium-ion batteries. Journal of Colloid and Interface Science, 2016, 474, 88-92.	9.4	23
118	Center-iodized graphene as an advanced anode material to significantly boost the performance of lithium-ion batteries. Nanoscale, 2018, 10, 9115-9122.	5.6	23
119	Half-cell and full-cell applications of sodium ion batteries based on carbon-coated Na3Fe0.5V1.5(PO4)3 nanoparticles cathode. Electrochimica Acta, 2018, 283, 1475-1481.	5.2	23
120	Effect of nanoparticle composition on oxygen reduction reaction activity of Fe/N–C catalysts: a comparative study. Catalysis Science and Technology, 2019, 9, 711-717.	4.1	23
121	Mass Production of Metallic Fe@Carbon Nanoparticles with Plastic and Rusty Wastes for High-Capacity Anodes of Ni–Fe Batteries. ACS Sustainable Chemistry and Engineering, 2019, 7, 10995-11003.	6.7	23
122	Environmentally-friendly biomimicking synthesis of TiO2 nanomaterials using saccharides to tailor morphology, crystal phase and photocatalytic activity. CrystEngComm, 2013, 15, 4694.	2.6	22
123	In Situ Packaging FeF _{<i>x</i>} into Sack-like Carbon Nanoreactors: A Smart Way To Make Soluble Fluorides Applicable to Aqueous Batteries. ACS Applied Materials & Interfaces, 2016, 8, 3874-3882.	8.0	22
124	Bimetal–organic-frameworks-derived yolk–shell-structured porous Co ₂ P/ZnO@PC/CNTs hybrids for highly sensitive non-enzymatic detection of superoxide anion released from living cells. Chemical Communications, 2016, 52, 12442-12445.	4.1	22
125	Aspergillus flavus Conidia-derived Carbon/Sulfur Composite as a Cathode Material for High Performance Lithium–Sulfur Battery. Scientific Reports, 2016, 6, 18739.	3.3	22
126	Controlled synthesis of Mn3(PO4)2 hollow spheres as biomimetic enzymes for selective detection of superoxide anions released by living cells. Mikrochimica Acta, 2017, 184, 1177-1184.	5.0	22

#	Article	IF	CITATIONS
127	Porous carbon derived from Sunflower as a host matrix for ultra-stable lithium–selenium battery. Journal of Colloid and Interface Science, 2017, 490, 747-753.	9.4	22
128	Highly efficient Fe-N-C oxygen reduction electrocatalyst engineered by sintering atmosphere. Journal of Power Sources, 2020, 449, 227497.	7.8	22
129	Novel CdFe Bimetallic Complex-Derived Ultrasmall Fe- and N-Codoped Carbon as a Highly Efficient Oxygen Reduction Catalyst. ACS Applied Materials & Interfaces, 2019, 11, 21481-21488.	8.0	21
130	Self-assembled three-dimensional interpenetrating porous graphene aerogels with MnO2 coating and their application as high-performance supercapacitors. New Journal of Chemistry, 2013, 37, 4199.	2.8	20
131	Cubic KTi 2 (PO 4) 3 as electrode materials for sodium-ion batteries. Journal of Colloid and Interface Science, 2016, 483, 67-72.	9.4	20
132	Nanocubes composed of FeS ₂ @C nanoparticles as advanced anode materials for K-ion storage. Inorganic Chemistry Frontiers, 2020, 7, 394-401.	6.0	20
133	Unearth the understanding of interfacial engineering techniques on nano sulfur cathodes for steady Li–S cell systems. Journal of Materials Chemistry A, 2020, 8, 11976-11985.	10.3	20
134	Low-operating temperature quasi-solid-state potassium-ion battery based on commercial materials. Journal of Colloid and Interface Science, 2021, 582, 932-939.	9.4	20
135	Carbon-coated P2-type Na0.67Ni0.33Ti0.67O2 as an anode material for sodium ion batteries. Journal of Solid State Electrochemistry, 2015, 19, 1827-1831.	2.5	19
136	Smart Magnetic Interaction Promotes Efficient and Green Production of High-Quality Fe ₃ O ₄ @Carbon Nanoactives for Sustainable Aqueous Batteries. ACS Sustainable Chemistry and Engineering, 2018, 6, 757-765.	6.7	19
137	Template method for fabricating Co and Ni nanoparticles/porous channels carbon for solid-state sodium-sulfur battery. Journal of Colloid and Interface Science, 2020, 578, 710-716.	9.4	19
138	Three-dimensional nanotubes composed of carbon-anchored ultrathin MoS ₂ nanosheets with enhanced lithium storage. Physical Chemistry Chemical Physics, 2016, 18, 19792-19797.	2.8	18
139	Reduced graphene oxide and Fe2(MoO4)3 composite for sodium-ion batteries cathode with improved performance. Journal of Alloys and Compounds, 2016, 674, 392-398.	5.5	18
140	Ternary Ni _{<i>x</i>} Co _{3â^'<i>x</i>} S ₄ with a Fine Hollow Nanostructure as a Robust Electrocatalyst for Hydrogen Evolution. ChemCatChem, 2017, 9, 4169-4174.	3.7	18
141	Nitrogenâ€Doped Carbon as a Host for Tellurium for Highâ€Rate Li–Te and Na–Te Batteries. ChemSusChem, 2019, 12, 1196-1202.	6.8	18
142	3D carbon framework-supported FeSe for high-performance potassium ion batteries. Sustainable Energy and Fuels, 2020, 4, 4807-4813.	4.9	18
143	Synthesis of novel book-like K _{0.23} V ₂ O ₅ crystals and their electrochemical behavior in lithium batteries. Chemical Communications, 2015, 51, 15290-15293.	4.1	17
144	Exploration of NbSe ₂ Flakes as Reversible Host Materials for Sodiumâ€ion and Potassiumâ€ion Batteries. ChemistrySelect, 2018, 3, 9807-9811.	1.5	17

#	Article	IF	CITATIONS
145	F-Doping effects on carbon-coated Li3V2(PO4)3 as a cathode for high performance lithium rechargeable batteries: combined experimental and DFT studies. Physical Chemistry Chemical Physics, 2018, 20, 15192-15202.	2.8	16
146	Encapsulating Sulfides into Tridymite/Carbon Reactors Enables Stable Sodium Ion Conversion/Alloying Anode with High Initial Coulombic Efficiency Over 89%. Advanced Functional Materials, 2021, 31, 2009598.	14.9	16
147	Cathode host engineering for non-lithium (Na, K and Mg) sulfur/selenium batteries: A state-of-the-art review. Nano Materials Science, 2023, 5, 119-140.	8.8	16
148	lodineâ€Doped Graphene with Opportune Interlayer Spacing as Superior Anode Materials for Highâ€Performance Lithiumâ€Ion Batteries. ChemistrySelect, 2017, 2, 5518-5523.	1.5	15
149	A labyrinth-like network electrode design for lithium–sulfur batteries. Nanoscale, 2019, 11, 14648-14653.	5.6	15
150	Ultrafast kinetics and high capacity for Stable Sodium Storage enabled by Fe3Se4/ZnSe heterostructure engineering. Composites Part B: Engineering, 2021, 224, 109166.	12.0	15
151	Flexible MXene-Ti3C2Tx bond few-layers transition metal dichalcogenides MoS2/C spheres for fast and stable sodium storage. Chemical Engineering Journal, 2022, 427, 130960.	12.7	15
152	Chessboard structured electrode design for Li-S batteries Based on MXene nanosheets. Chemical Engineering Journal, 2022, 429, 131997.	12.7	15
153	Exploration of Na _{2.65} Ti _{3.35} Fe _{0.65} O ₉ as anode materials for Na-ion batteries. Chemical Communications, 2015, 51, 3227-3230.	4.1	14
154	Heterogeneous interface designing of bimetallic selenides nanocubes for superior sodium storage. Journal of Power Sources, 2021, 506, 230249.	7.8	14
155	Platanus hispanica-inspired design of Co–carbon nanotube frameworks through chemical vapor deposition: a highly integrated hierarchical electrocatalyst for oxygen reduction reactions. Chemical Communications, 2016, 52, 12992-12995.	4.1	13
156	MoO ₂ nanosheets embedded in amorphous carbon matrix for sodium-ion batteries. Royal Society Open Science, 2017, 4, 170892.	2.4	13
157	Precise preparation of layered Na _{0.5} Ni _{0.25} Mn _{0.75} O ₂ micro-sheets for 3.8 V Na-ion batteries. Chemical Communications, 2017, 53, 9117-9120.	4.1	13
158	Hydrothermally hollow SnO ₂ microspheres as sodium ion battery anode with high capacity and superior stability. Micro and Nano Letters, 2017, 12, 777-780.	1.3	13
159	Sheet-to-layer structure of SnSe ₂ /MXene composite materials for advanced sodium ion battery anodes. New Journal of Chemistry, 2021, 45, 1944-1952.	2.8	13
160	The construction of ZnS–In ₂ S ₃ nanonests and their heterojunction boosted visible-light photocatalytic/photoelectrocatalytic performance. New Journal of Chemistry, 2019, 43, 14402-14408.	2.8	12
161	A review on the electrochemical reaction of Li-rich layered oxide materials. Inorganic Chemistry Frontiers, 2021, 8, 4300-4312.	6.0	12
162	Efficient Anchoring of Polysulfides Based on Self-Assembled Ti ₃ C ₂ T _{<i>x</i>} Nanosheet-Connected Hollow Co(OH) ₂ Nanotubes for Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2021, 13, 57285-57293.	8.0	12

#	Article	IF	CITATIONS
163	CdMn Bimetallic Complex-Derived Manganese–Nitrogen Species as Electrocatalysts for an Oxygen Reduction Reaction. ACS Sustainable Chemistry and Engineering, 2020, 8, 12618-12625.	6.7	11
164	Na 3 V 2 O 2 (PO 4) 2 F Cathode for Highâ€Performance Quasiâ€5olidâ€5tate Sodiumâ€Ion Batteries with a Wic Workable Temperature Range. Energy Technology, 2020, 8, 2000494.	le _{3.8}	11
165	Synthesis of sodium manganese oxides with tailored multi-morphologies and their application in lithium/sodium ion batteries. RSC Advances, 2014, 4, 30340.	3.6	10
166	Bio-inspired synthesis of carbon hollow microspheres from Aspergillus flavus conidia for lithium-ion batteries. RSC Advances, 2015, 5, 59655-59658.	3.6	9
167	Evaluation of O3-type Na0.8Ni0.6Sb0.4O2 as cathode materials for sodium-ion batteries. Journal of Solid State Electrochemistry, 2016, 20, 2331-2335.	2.5	9
168	Uniform implantation of CNTs on total activated carbon surfaces: a smart engineering protocol for commercial supercapacitor applications. Nanotechnology, 2017, 28, 145402.	2.6	9
169	Exploration of Mn0.5Ti2(PO4)3@rgo composite as anode electrode for Na-ion battery. Journal of Materials Science: Materials in Electronics, 2018, 29, 4250-4255.	2.2	9
170	Carbon nanoscrolls: synthesis and applications. Journal of Materials Science: Materials in Electronics, 2018, 29, 18891-18904.	2.2	9
171	Facile fabrication of 3D hierarchically honeycomb-like Na7Fe4.5(P2O7)4@C nanocomposites with enhanced sodium storage performance. Journal of Alloys and Compounds, 2019, 771, 297-301.	5.5	9
172	Why does the capacity of vanadium selenide based aqueous zinc ion batteries continue to increase during long cycles?. Journal of Colloid and Interface Science, 2022, 615, 30-37.	9.4	9
173	Recent Advances of Pore Structure in Disordered Carbons for Sodium Storage: A Mini Review. Chemical Record, 2022, 22, .	5.8	9
174	Self-assembled three-dimensional graphene/OMCs hybrid aerogels for high-rate supercapacitive energy storage. RSC Advances, 2013, 3, 25317.	3.6	8
175	Na 3 TiV(PO 4) 3 /C nanoparticles for sodiumâ€ion symmetrical and full batteries. Energy Storage, 2019, 1, e74.	4.3	8
176	A yolk–albumen–shell structure of mixed Ni–Co oxide with an ultrathin carbon shell for high-sensitivity glucose sensors. Materials Advances, 2020, 1, 908-917.	5.4	8
177	Na3(TiOPO4)2F microspheres as a long-life anode for Na-ion batteries. Chemical Engineering Journal, 2020, 402, 126118.	12.7	8
178	A new polyanionic cathode with stable structure and superior kinetics for Na-ion batteries. Chemical Engineering Journal, 2021, 405, 127035.	12.7	8
179	Heterogeneous interface design of bimetallic selenide nanoboxes enables stable sodium storage. Inorganic Chemistry Frontiers, 2021, 8, 4796-4805.	6.0	8
180	Gelation of organic liquid electrolyte to achieve superior sodium-ion full-cells. Journal of Colloid and Interface Science, 2021, 599, 190-197.	9.4	8

#	Article	IF	CITATIONS
181	Low in-plane atomic density phosphorene anodes for lithium-/sodium-ion batteries. Journal of Materials Chemistry C, 2021, 9, 6802-6814.	5.5	8
182	A small molecule organic compound applied as an advanced anode material for lithium-ion batteries. Chemical Communications, 2022, 58, 697-700.	4.1	8
183	NaTi ₃ FeO ₈ : a novel anode material for sodium-ion batteries. RSC Advances, 2015, 5, 44313-44316.	3.6	7
184	Incorporating Fe into Bismuthic Anode Systems: A Smart "Merits Combination/Complementation― Route to Build Better Ni–Bi Batteries. ACS Applied Materials & Interfaces, 2020, 12, 5876-5884.	8.0	7
185	Anthozoan-like porous nanocages with nano-cobalt-armed CNT multifunctional layers as a cathode material for highly stable Na–S batteries. Inorganic Chemistry Frontiers, 2022, 9, 645-651.	6.0	7
186	Minimizing Carbon Content with Threeâ€inâ€One Functionalized Nano Conductive Ceramics: Toward More Practical and Safer S Cathodes of Liâ€5 Cells. Energy and Environmental Materials, 2023, 6, .	12.8	7
187	A distinctive conversion mechanism for reversible zinc ion storage. Inorganic Chemistry Frontiers, 2022, 9, 2706-2713.	6.0	7
188	Na _{0.56} Ti _{1.72} Fe _{0.28} O ₄ : a novel anode material for Na-ion batteries. RSC Advances, 2015, 5, 88556-88559.	3.6	6
189	Ascorbic acid-tailored synthesis of carbon-wrapped nanocobalt encapsulated in graphene aerogel as electrocatalysts for highly effective oxygen-reduction reaction. Journal of Solid State Electrochemistry, 2017, 21, 3641-3648.	2.5	6
190	Towards high performance room temperature sodium-sulfur batteries: Strategies to avoid shuttle effect. Journal of Colloid and Interface Science, 2022, 606, 22-37.	9.4	6
191	Overcoming the conductivity limit of insulator through tunneling-current junction welding: Ag@PVP core–shell nanowire for high-performance transparent electrode. Journal of Materials Chemistry C, 2021, 9, 3957-3968.	5.5	6
192	Hollow carbon spheres loaded with NiSe2 nanoplates as multifunctional SeS2 hosts for Li-SeS2 batteries. Journal of Colloid and Interface Science, 2022, 608, 2760-2767.	9.4	6
193	Tessellated N-doped carbon/CoSe ₂ as trap-catalyst sulfur hosts for room-temperature sodium–sulfur batteries. Inorganic Chemistry Frontiers, 2022, 9, 1743-1751.	6.0	6
194	Synthesis and comparison of inâ€situ carbonâ€decorated sodium manganese vanadium phosphate cathode and sodiumâ€ion fullâ€cell configurations. Nano Select, 2021, 2, 1544-1553.	3.7	5
195	Thermotolerant and Li ₂ S _{<i>n</i>} -trapped/converted separators enabled by NiFe ₂ O ₄ quantum dots/g-C ₃ N ₄ nanofiber interlayers: toward more practical Li–S batteries. Materials Chemistry Frontiers, 2022, 6, 2034-2041.	5.9	5
196	<scp> Na ₂ TiV </scp> (<scp> PO ₄ </scp>) ₃ @C composite with excellent Naâ€storage performance based on a solidâ€state polymer electrolyte membrane. International Journal of Energy Research, 2021, 45, 8008-8017.	4.5	4
197	Cathodic electrodeposition of MOF films using hydrogen peroxide. Angewandte Chemie, 0, , .	2.0	4
198	Direct synthesis of metal selenide hybrids as superior sodium storage anodes. Materials Chemistry Frontiers, 2021, 5, 7852-7860.	5.9	4

#	Article	IF	CITATIONS
199	High-rate and non-toxic Na ₇ Fe _{4.5} (P ₂ O ₇) ₄ @C for quasi-solid-state sodium-ion batteries. Materials Chemistry Frontiers, 2021, 5, 2783-2790.	5.9	3
200	A facilely-synthesized polyanionic cathode with impressive long-term cycling stability for sodium-ion batteries. Chemical Communications, 2021, 57, 9566-9569.	4.1	2
201	Electrode engineering starting from live biomass: a â€~smart' way to construct smart pregnant hybrids for sustainable charge storage devices. Materials Chemistry Frontiers, 2019, 3, 796-805.	5.9	1
202	Designing 2D nickel hydroxide@graphene nanosheet composites to confine sulfur in highly stable lithium–sulfur batteries. Sustainable Energy and Fuels, 2021, 5, 5175-5183.	4.9	1
203	Bacterial cellulose network based gel polymer electrolyte for quasi-solid-state sodium-ion battery. Journal of Materials Science: Materials in Electronics, O, , .	2.2	1
204	Zn–S Hybrid Batteries: Maximizing Energy Storage of Flexible Aqueous Batteries through Decoupling Charge Carriers (Adv. Energy Mater. 14/2021). Advanced Energy Materials, 2021, 11, 2170055.	19.5	0