Chunmei Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2069633/publications.pdf Version: 2024-02-01

CHUNMEL ZHANC

#	Article	IF	CITATIONS
1	Resource utilization from solid waste originated from oil-based shale drilling cutting during shale gas development. Chemosphere, 2022, 298, 134318.	4.2	7
2	Mechanochemical Characterisation of Calcined Impure Kaolinitic Clay as a Composite Binder in Cementitious Mortars. Journal of Composites Science, 2022, 6, 134.	1.4	10
3	Effects of Fe and Al ions during hydrogen sulphide (H2S)-induced corrosion of tetracalcium aluminoferrite (C4AF) and tricalcium aluminate (C3A). Journal of Hazardous Materials, 2021, 403, 123928.	6.5	11
4	Interface characteristics of oil-well cement and rock asphalt coated by dicalcium silicate. Journal of Adhesion Science and Technology, 2021, 35, 973-992.	1.4	3
5	Synthesis and evaluation of a new type of oil-well cement temperature-resistant retarder. Construction and Building Materials, 2021, 302, 124153.	3.2	8
6	Study on the dynamic and static mechanical properties of microsphere rubber powder reinforced oil well cement composites. Construction and Building Materials, 2021, 309, 125145.	3.2	16
7	Preparation and action mechanism of temperature control materials for low-temperature cement. Construction and Building Materials, 2021, 312, 125364.	3.2	8
8	Analysis of interfacial nanostructure and interaction mechanisms between cellulose fibres and calcium silicate hydrates using experimental and molecular dynamics simulation data. Applied Surface Science, 2020, 506, 144914.	3.1	33
9	Interface and crack propagation of cement-based composites with sulfonated asphalt and plasma-treated rock asphalt. Construction and Building Materials, 2020, 242, 118161.	3.2	12
10	Synergetic activation of persulfate by heat and Fe(II)-complexes for hydrolyzed polyacrylamide degradation at high pH condition: Kinetics, mechanism, and application potential for filter cake removal during cementing in CO2 storage wells. Science of the Total Environment, 2020, 713, 136561.	3.9	17
11	Utilization of red mud, slag and waste drilling fluid for the synthesis of slag-red mud cementitious material. Journal of Cleaner Production, 2019, 238, 117902.	4.6	54
12	The effect of graphene oxide grafted carbon fiber on mechanical properties of class G Portland cement. Journal of Adhesion Science and Technology, 2019, 33, 2494-2516.	1.4	12
13	Mechanical and thermal properties of aluminate cement paste with blast furnace slag at high temperatures. Construction and Building Materials, 2019, 228, 116747.	3.2	31
14	Mechanical response and crack propagation of oil well cement under dynamic and static loads. Journal of Adhesion Science and Technology, 2019, 33, 1658-1675.	1.4	6
15	Effect of the hydration rate and microstructure of Portland cement slurry on hydrostatic pressure transfer. Powder Technology, 2019, 352, 251-261.	2.1	16
16	Evolution of pore structure of oil well cement slurry in suspension–solid transition stage. Construction and Building Materials, 2019, 214, 382-398.	3.2	28
17	Hybrid effect, mechanical properties and enhancement mechanism of oil-well cement stone with multiscale silicon carbide whisker. Journal of Adhesion Science and Technology, 2019, 33, 903-920.	1.4	12
18	Mechanical properties and microstructure of oil-well cement stone enhanced with submicron SiC whiskers. Journal of Adhesion Science and Technology, 2019, 33, 50-65.	1.4	11

CHUNMEI ZHANG

#	Article	IF	CITATIONS
19	Integrity changes of cement sheath due to contamination by drilling fluid. Advances in Cement Research, 2018, 30, 47-55.	0.7	14
20	Influence of potassium titanate whisker on the mechanical properties and microstructure of calcium aluminate cement for <i>in situ</i> combustion. Journal of Adhesion Science and Technology, 2018, 32, 343-358.	1.4	10
21	Synthesis of microcrystalline brownmillerite Ca2(Al,Fe)2O5and its influence of mechanical properties to the class G oil-well cement. Journal of Adhesion Science and Technology, 2018, 32, 125-138.	1.4	7
22	Effects of plasma-treated rock asphalt on the mechanical properties and microstructure of oil-well cement. Construction and Building Materials, 2018, 186, 163-173.	3.2	28
23	Design of low-density cement optimized by cellulose-based fibre for oil and natural gas wells. Powder Technology, 2018, 338, 506-518.	2.1	30
24	Relationship Between the Microstructure/Pore Structure of Oil-Well Cement and Hydrostatic Pressure. Transport in Porous Media, 2018, 124, 463-478.	1.2	18
25	A new approach to improve mechanical properties and durability of low-density oil well cement composite reinforced by cellulose fibres in microstructural scale. Construction and Building Materials, 2018, 177, 499-510.	3.2	30
26	Mechanical properties and microstructure of oil well cement stone enhanced with Tetra-needle like ZnO whiskers. Construction and Building Materials, 2017, 135, 59-67.	3.2	45
27	Research on the law of mechanical damage-induced deformation of cement sheaths of a gas storage well. Journal of Natural Gas Science and Engineering, 2017, 43, 48-57.	2.1	35
28	Effect of nanosilica on the mechanical properties of oil well cement at low temperature. Magazine of Concrete Research, 2017, 69, 493-501.	0.9	13
29	Effects of alkali-treated bamboo fibers on the morphology and mechanical properties of oil well cement. Construction and Building Materials, 2017, 150, 619-625.	3.2	62
30	Effects of Ammonium Hydrolyzed Polyacrylonitrile on Oil-Well Cement Slurry. Journal of Materials in Civil Engineering, 2017, 29, 04017090.	1.3	9
31	Utilisation of waste cardboard and Nano silica fume in the production of fibre cement board reinforced by glass fibres. Construction and Building Materials, 2017, 152, 746-755.	3.2	22
32	A Novel Terpolymer as Fluid Loss Additive for Oil Well Cement. International Journal of Polymer Science, 2017, 2017, 1-8.	1.2	10
33	Research on the Interface Structure during Unidirectional Corrosion for Oil-Well Cement in H ₂ S Based on Computed Tomography Technology. Industrial & Engineering Chemistry Research, 2016, 55, 10889-10895.	1.8	19
34	Study of the failure mechanisms of a cement sheath based on an equivalent physical experiment. Journal of Natural Gas Science and Engineering, 2016, 31, 331-339.	2.1	45
35	Feasibility Study on Production of Fiber Cement Board Using Waste Kraft Pulp in Corporation with Polypropylene and Acrylic Fibers. Materials Today: Proceedings, 2016, 3, 376-380.	0.9	10
36	A novel high temperature retarder applied to a long cementing interval. RSC Advances, 2016, 6, 14421-14426.	1.7	18

CHUNMEI ZHANG

#	Article	IF	CITATIONS
37	Improvement of Flexural Performance of Fibre Cements Composite Board through Fibre Impregnation. , 2016, , .		2
38	Mechanical properties of oil well cement stone reinforced with hybrid fiber of calcium carbonate whisker and carbon fiber. Petroleum Exploration and Development, 2015, 42, 104-111.	3.0	54
39	Hybrid effect of calcium carbonate whisker and carbon fiber on the mechanical properties and microstructure of oil well cement. Construction and Building Materials, 2015, 93, 995-1002.	3.2	89
40	Time effectiveness of the low-temperature plasma surface modification of ground tire rubber powder. Journal of Adhesion Science and Technology, 2015, 29, 1330-1340.	1.4	29
41	The influence of sulfomethyl phenol formaldehyde resin (SMP) on cementing slurry. Journal of Adhesion Science and Technology, 2015, 29, 1002-1013.	1.4	3
42	Characterization of the unidirectional corrosion of oilwell cement exposed to H ₂ S under high-sulfur gas reservoir conditions. RSC Advances, 2015, 5, 71529-71536.	1.7	13
43	The Slag Influence on High Temperature Resistance of Aluminophosphate Cementfor Heavy Oil Thermal Recovery. High Temperature Materials and Processes, 2014, 33, 325-328.	0.6	3
44	The effect of limestone powder, silica fume and fibre content on flexural behaviour of cement composite reinforced by waste Kraft pulp. Construction and Building Materials, 2013, 46, 142-149.	3.2	53
45	Improvement of the properties of plasmaâ€modified ground tire rubberâ€filled cement paste. Journal of Applied Polymer Science, 2012, 126, 1837-1843.	1.3	28
46	Comparing flexural behaviour of fibre–cement composites reinforced bagasse: Wheat and eucalyptus. Construction and Building Materials, 2011, 25, 3661-3667.	3.2	85