Fatemeh Maghuly

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/206928/publications.pdf

Version: 2024-02-01

51 935 18 28 papers citations h-index g-index

57 57 57 57 1198

57 57 57 1198
all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Editorial: Functional Genomics in Plant Breeding 2.0. International Journal of Molecular Sciences, 2022, 23, 6959.	4.1	2
2	Genome Wide Identification and Annotation of NGATHA Transcription Factor Family in Crop Plants. International Journal of Molecular Sciences, 2022, 23, 7063.	4.1	5
3	Editorial: Omics Technologies Toward Systems Biology. Frontiers in Genetics, 2021, 12, 756847.	2.3	2
4	Application of Genome Editing in Tomato Breeding: Mechanisms, Advances, and Prospects. International Journal of Molecular Sciences, 2021, 22, 682.	4.1	29
5	Functional Genomics for Plant Breeding. International Journal of Molecular Sciences, 2021, 22, 11854.	4.1	3
6	Mutagenesis of <i>in vitro</i> explants of <i>Coffea</i> spp. to induce fungal resistance, 2021,, 344-352.		0
7	Gene expression profiling identifies pathways involved in seed maturation of Jatropha curcas. BMC Genomics, 2020, 21, 290.	2.8	2
8	Genome sequence of <i>Malania oleifera </i> , a tree with great value for nervonic acid production. GigaScience, 2019, 8, .	6.4	36
9	The complete chloroplast genome sequence annotation for Malania oleifera, a critically endangered and important bioresource tree. Conservation Genetics Resources, 2019, 11, 271-274.	0.8	10
10	Biotechnology of temperate fruit trees and grapevines Acta Biochimica Polonica, 2019, 52, 673-678.	0.5	12
11	Localization of gene expression, tissue specificity of Populus xylosyltransferase genes by isolation and functional characterization of their promoters. Plant Cell, Tissue and Organ Culture, 2018, 134, 503-508.	2.3	22
12	High-quality assembly of the reference genome for scarlet sage, Salvia splendens, an economically important ornamental plant. GigaScience, $2018, 7, \ldots$	6.4	49
13	The Pattern and Distribution of Induced Mutations in J. curcas Using Reduced Representation Sequencing. Frontiers in Plant Science, 2018, 9, 524.	3.6	9
14	Chemical and Physical Mutagenesis in Jatropha curcas. , 2017, , 21-38.		25
15	Forward and Reverse Genetics for the Improvement of Jatropha. Compendium of Plant Genomes, 2017, , 131-148.	0.5	3
16	Proteome Analyses of Jatropha curcas. , 2017, , 203-223.		2
17	Editorial: Sustainable production of renewable energy from nonâ€food crops. Biotechnology Journal, 2015, 10, 503-503.	3.5	3
18	Geographic origin is not supported by the genetic variability found in a large living collection of Jatropha curcas with accessions from three continents. Biotechnology Journal, 2015, 10, 536-551.	3.5	42

#	Article	IF	CITATIONS
19	Biotechnology of Euphorbiaceae (Jatropha curcas, Manihot esculenta, Ricinus communis). , 2015, , 87-114.		4
20	Virus versus Host Plant MicroRNAs: Who Determines the Outcome of the Interaction?. PLoS ONE, 2014, 9, e98263.	2.5	16
21	Impact of Sulfur and Vitamin C on the Allergenicity of Mal d 2 from Apple (<i>Malus domestica</i>). Journal of Agricultural and Food Chemistry, 2014, 62, 7622-7630.	5.2	6
22	<i>Jatropha curcas</i> , a biofuel crop: Functional genomics for understanding metabolic pathways and genetic improvement. Biotechnology Journal, 2013, 8, 1172-1182.	3.5	78
23	Genomics of grapevine: from genomics research on model plants to crops and from science to grapevine breeding., 2013,, 119-148.		0
24	ALLERGOMICS OF BERRY FRUITS. Acta Horticulturae, 2012, , 663-668.	0.2	0
25	Biotechnological approaches to determine the impact of viruses in the energy crop plant Jatropha curcas. Virology Journal, 2011, 8, 386.	3.4	22
26	Investigation of genetic variation in Jatropha curcasby Ecotilling and ISSR. BMC Proceedings, 2011, 5, .	1.6	2
27	Microsatellite variability between apricot and related Prunusspecies. BMC Proceedings, 2011, 5, .	1.6	1
28	Proteomics, a systems biology based approach to investigations of Jatropha curcasseeds. BMC Proceedings, $2011, 5, \ldots$	1.6	2
29	Occurrence of African cassava mosaic virus (ACMV) and East African cassava mosaic virus – Uganda (EACMV-UG) in Jatropha curcas. BMC Proceedings, 2011, 5, P93.	1.6	15
30	Transgene silencing in grapevines transformed with GFLV resistance genes: analysis of variable expression of transgene, siRNAs production and cytosine methylation. Transgenic Research, 2010, 19, 17-27.	2.4	43
31	Genome size, karyotyping and FISH physical mapping of 45S and 5S genes in two cherry rootstocks: Prunus subhirtella and Prunus incisa × serrula. Journal of Biotechnology, 2010, 149, 88-94.	3.8	10
32	Awareness and knowledge of allergens: A need and a challenge to assure a safe and healthy consumption of small fruits. Journal of Berry Research, 2010, 1, 61-71.	1.4	7
33	Expression of calmodulin and lipid transfer protein genes in Prunus incisa x serrula under different stress conditions. Tree Physiology, 2009, 29, 437-444.	3.1	23
34	Characterization of T-DNA insertions in transgenic grapevines obtained by Agrobacterium-mediated transformation. Molecular Breeding, 2009, 24, 305-320.	2.1	23
35	Conformational changes of Mal d 2, a thaumatin-like apple allergen, induced by food processing. Food Chemistry, 2009, 112, 803-811.	8.2	33
36	Functional Genomics of Allergen Gene Families in Fruits. Nutrients, 2009, 1, 119-132.	4.1	8

#	Article	IF	Citations
37	Identification of four IgEâ€reactive proteins in raspberry (<i>Rubus ideaeus</i> L.). Molecular Nutrition and Food Research, 2008, 52, 1497-1506.	3.3	32
38	Screening and identification of putative allergens in berry fruits of the <i>Rosaceae</i> family: Technical challenges. BioFactors, 2008, 34, 37-46.	5.4	11
39	Stress regulated expression of the GUS-marker gene (uidA) under the control of plant calmodulin and viral 35S promoters in a model fruit tree rootstock: Prunus incisa×serrula. Journal of Biotechnology, 2008, 135, 105-116.	3.8	17
40	Mapping of fruit allergens by 2D electrophoresis and immunodetection. Expert Review of Proteomics, 2008, 5, 61-75.	3.0	32
41	Determination of viral infections in an Austrian collection of Canna indica. Journal of Plant Diseases and Protection, 2008, 115, 102-103.	2.9	6
42	Genetic Diversity and Population Structure of Apricot (Prunus armeniaca L.) from Northern Pakistan using Simple Sequence Repeats. Silvae Genetica, 2008, 57, 157-164.	0.8	6
43	Long-term stability of marker gene expression in Prunus subhirtella: A model fruit tree species. Journal of Biotechnology, 2007, 127, 310-321.	3.8	24
44	Mapping of <i>Malus domestica</i> allergens by 2â€D electrophoresis and IgEâ€reactivity. Electrophoresis, 2007, 28, 437-448.	2.4	49
45	Differentiation among Austrian populations of Norway spruce [Picea abies (L.) Karst.] assayed by mitochondrial DNA markers. Tree Genetics and Genomes, 2007, 3, 199-206.	1.6	14
46	Genetic diversity in managed subpopulations of Norway spruce [Picea abies (L.) Karst.]. Forest Ecology and Management, 2006, 222, 266-271.	3.2	41
47	MICROSATELLITE CHARACTERISATION OF APRICOT (PRUNUS ARMENIACA) CULTIVARS GROWN IN CENTRAL EUROPE. Acta Horticulturae, 2006, , 207-212.	0.2	4
48	Molecular characterization of grapevine plants transformed with GFLV resistance genes: II. Plant Cell Reports, 2006, 25, 546-553.	5.6	46
49	Microsatellite variability in apricots (Prunus armeniaca L.) reflects their geographic origin and breeding history. Tree Genetics and Genomes, 2005, 1, 151-165.	1.6	68
50	Biotechnological approaches to growing green energy from <i>Jatropha curcas</i> : challenges due to the undomesticated status of the species CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 0, , 1-13.	1.0	19
51	Improving coffee species for pathogen resistance. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 0, , .	1.0	9