Francis C Lynn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2068486/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Spatial and transcriptional heterogeneity of pancreatic beta cell neogenesis revealed by a time-resolved reporter system. Diabetologia, 2022, 65, 811-828.	6.3	7
2	A versatile fluorescence-quenched substrate for quantitative measurement of glucocerebrosidase activity within live cells. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	10
3	Premature termination codon readthrough upregulates progranulin expression and improves lysosomal function in preclinical models of GRN deficiency. Molecular Neurodegeneration, 2020, 15, 21.	10.8	19
4	Super-resolution microscopy compatible fluorescent probes reveal endogenous glucagon-like peptide-1 receptor distribution and dynamics. Nature Communications, 2020, 11, 467.	12.8	88
5	TrxG Complex Catalytic and Non-catalytic Activity Play Distinct Roles in Pancreas Progenitor Specification and Differentiation. Cell Reports, 2019, 28, 1830-1844.e6.	6.4	10
6	Lrrc55 is a novel prosurvival factor in pancreatic islets. American Journal of Physiology - Endocrinology and Metabolism, 2019, 317, E794-E804.	3.5	5
7	In vitro analyses of suspected arrhythmogenic thin filament variants as a cause of sudden cardiac death in infants. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6969-6974.	7.1	16
8	Mediator subunit MDT-15/MED15 and Nuclear Receptor HIZR-1/HNF4 cooperate to regulate toxic metal stress responses in Caenorhabditis elegans. PLoS Genetics, 2019, 15, e1008508.	3.5	20
9	Friend and foe: β-cell Ca2+ signaling and the development of diabetes. Molecular Metabolism, 2019, 21, 1-12.	6.5	57
10	Neuronal PAS Domain Protein 4 Suppression of Oxygen Sensing Optimizes Metabolism during Excitation of Neuroendocrine Cells. Cell Reports, 2018, 22, 163-174.	6.4	19
11	The p300 and CBP Transcriptional Coactivators Are Required for β-Cell and α-Cell Proliferation. Diabetes, 2018, 67, 412-422.	0.6	24
12	Single-Cell Transcriptome Profiling of Mouse and hESC-Derived Pancreatic Progenitors. Stem Cell Reports, 2018, 11, 1551-1564.	4.8	94
13	The Polycomb-Dependent Epigenome Controls Î ² Cell Dysfunction, Dedifferentiation, and Diabetes. Cell Metabolism, 2018, 27, 1294-1308.e7.	16.2	109
14	Recessive mutations in ATP8A2 cause severe hypotonia, cognitive impairment, hyperkinetic movement disorders and progressive optic atrophy. Orphanet Journal of Rare Diseases, 2018, 13, 86.	2.7	29
15	Phosphorylation of NEUROG3 Links Endocrine Differentiation to the Cell Cycle in Pancreatic Progenitors. Developmental Cell, 2017, 41, 129-142.e6.	7.0	80
16	SOX4 Allows Facultative Î ² -Cell Proliferation Through Repression of <i>Cdkn1a</i> . Diabetes, 2017, 66, 2213-2219.	0.6	15
17	Reawakening the Duct Cell Progenitor?. Endocrinology, 2016, 157, 52-53.	2.8	0
18	Using CRISPR-Cas9 Genome Editing to Enhance Cell Based Therapies for the Treatment of Diabetes		1

Using CRISPR-Cas9 Genome Mellitus., 2016, , 127-147.

FRANCIS C LYNN

#	Article	IF	CITATIONS
19	Npas4 Transcription Factor Expression Is Regulated by Calcium Signaling Pathways and Prevents Tacrolimus-induced Cytotoxicity in Pancreatic Beta Cells. Journal of Biological Chemistry, 2016, 291, 2682-2695.	3.4	33
20	Reduced Insulin Production Relieves Endoplasmic Reticulum Stress and Induces Î ² Cell Proliferation. Cell Metabolism, 2016, 23, 179-193.	16.2	160
21	Generation of a Conditional Allele of the Transcription Factor Atonal Homolog 8 (Atoh8). PLoS ONE, 2016, 11, e0146273.	2.5	11
22	All-encomPASsing regulation of β-cells: PAS domain proteins in β-cell dysfunction and diabetes. Trends in Endocrinology and Metabolism, 2015, 26, 49-57.	7.1	14
23	SOX4 cooperates with neurogenin 3 to regulate endocrine pancreas formation in mouse models. Diabetologia, 2015, 58, 1013-1023.	6.3	27
24	Use-Dependent Activation of Neuronal Kv1.2 Channel Complexes. Journal of Neuroscience, 2015, 35, 3515-3524.	3.6	15
25	TALEN/CRISPR-Mediated eGFP Knock-In Add-On at the OCT4 Locus Does Not Impact Differentiation of Human Embryonic Stem Cells towards Endoderm. PLoS ONE, 2014, 9, e114275.	2.5	28
26	Quetiapine Treatment in Youth Is Associated With Decreased Insulin Secretion. Journal of Clinical Psychopharmacology, 2014, 34, 359-364.	1.4	18
27	Glycoprotein 130 Receptor Signaling Mediates α-Cell Dysfunction in a Rodent Model of Type 2 Diabetes. Diabetes, 2014, 63, 2984-2995.	0.6	24
28	Characterization of polyhormonal insulin-producing cells derived in vitro from human embryonic stem cells. Stem Cell Research, 2014, 12, 194-208.	0.7	133
29	Identification and analysis of murine pancreatic islet enhancers. Diabetologia, 2013, 56, 542-552.	6.3	55
30	Npas4 Is a Novel Activity–Regulated Cytoprotective Factor in Pancreatic β-Cells. Diabetes, 2013, 62, 2808-2820.	0.6	35
31	The Transcription Factor Atonal homolog 8 Regulates Gata4 and Friend of Gata-2 during Vertebrate Development. Journal of Biological Chemistry, 2013, 288, 24429-24440.	3.4	32
32	Maintenance of β-Cell Maturity and Plasticity in the Adult Pancreas. Diabetes, 2012, 61, 1365-1371.	0.6	64
33	Regulation of GIP and GLP1 Receptor Cell Surface Expression by N-Glycosylation and Receptor Heteromerization. PLoS ONE, 2012, 7, e32675.	2.5	52
34	Sequence and epigenetic determinants in the regulation of the Math6 gene by Neurogenin3. Differentiation, 2011, 82, 66-76.	1.9	9
35	A mouse model for monitoring islet cell genesis and developing therapies for diabetes. DMM Disease Models and Mechanisms, 2011, 4, 268-276.	2.4	12
36	Rfx6 directs islet formation and insulin production in mice and humans. Nature, 2010, 463, 775-780.	27.8	300

FRANCIS C LYNN

#	Article	IF	CITATIONS
37	Serotonin regulates pancreatic beta cell mass during pregnancy. Nature Medicine, 2010, 16, 804-808.	30.7	489
38	Homeodomain transcription factor NKX2.2 functions in immature cells to control enteroendocrine differentiation and is expressed in gastrointestinal neuroendocrine tumors. Endocrine-Related Cancer, 2009, 16, 267-279.	3.1	33
39	Meta-regulation: microRNA regulation of glucose and lipid metabolism. Trends in Endocrinology and Metabolism, 2009, 20, 452-459.	7.1	169
40	Induction of pancreatic islet cell differentiation by the neurogenin–neuroD cascade. Differentiation, 2008, 76, 381-391.	1.9	44
41	Novel Glucagon Receptor Antagonists with Improved Selectivity over the Glucose-Dependent Insulinotropic Polypeptide Receptor. Journal of Medicinal Chemistry, 2008, 51, 5387-5396.	6.4	46
42	Mouse let-7 miRNA populations exhibit RNA editing that is constrained in the 5'-seed/ cleavage/anchor regions and stabilize predicted mmu-let-7a:mRNA duplexes. Genome Research, 2008, 18, 1571-1581.	5.5	87
43	Identification of the bHLH Factor Math6 as a Novel Component of the Embryonic Pancreas Transcriptional Network. PLoS ONE, 2008, 3, e2430.	2.5	38
44	Sox9 coordinates a transcriptional network in pancreatic progenitor cells. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10500-10505.	7.1	214
45	MicroRNA Expression Is Required for Pancreatic Islet Cell Genesis in the Mouse. Diabetes, 2007, 56, 2938-2945.	0.6	344
46	Reversal of islet GIP receptor down-regulation and resistance to GIP by reducing hyperglycemia in the Zucker rat. Biochemical and Biophysical Research Communications, 2007, 362, 1007-1012.	2.1	108
47	The HMG Box Transcription Factor Sox4 Contributes to the Development of the Endocrine Pancreas. Diabetes, 2005, 54, 3402-3409.	0.6	104
48	Dipeptidyl Peptidase IV Inhibitor Treatment Stimulates Â-Cell Survival and Islet Neogenesis in Streptozotocin-Induced Diabetic Rats. Diabetes, 2003, 52, 741-750.	0.6	326
49	A novel pathway for regulation of glucoseâ€dependent insulinotropic polypeptide receptor expression in βâ€cells. FASEB Journal, 2003, 17, 91-93.	0.5	89
50	Glucose-dependent insulinotropic polypeptide receptor null mice exhibit compensatory changes in the enteroinsular axis. American Journal of Physiology - Endocrinology and Metabolism, 2003, 284, E931-E939.	3.5	105
51	Defective Glucose-Dependent Insulinotropic Polypeptide Receptor Expression in Diabetic Fatty Zucker Rats. Diabetes, 2001, 50, 1004-1011.	0.6	193
52	Glucose-Dependent Insulinotropic Polypeptide Stimulation of Lipolysis in Differentiated 3T3-L1 Cells: Wortmannin-Sensitive Inhibition by Insulin**This work was supported by grants from Zymogenetics Inc. (Seattle, WA), the Medical Research Council of Canada (5–90007-RAP/CHSM) and the Canadian Diabetes Association (CHSM/RAP) Endocrinology, 1999, 140, 398-404.	2.8	55
53	Characterization of the Carboxyl-terminal Domain of the Rat Glucose-dependent Insulinotropic Polypeptide (GIP) Receptor. Journal of Biological Chemistry, 1999, 274, 24593-24601.	3.4	31
54	Improved glucose tolerance in rats treated with the dipeptidyl peptidase IV (CD26) inhibitor Ile-thiazolidide. Metabolism: Clinical and Experimental, 1999, 48, 385-389.	3.4	119

#	Article	IF	CITATIONS
55	Glucose-Dependent Insulinotropic Polypeptide Stimulation of Lipolysis in Differentiated 3T3-L1 Cells: Wortmannin-Sensitive Inhibition by Insulin. Endocrinology, 1999, 140, 398-404.	2.8	22
56	HIP1, a human homologue of S. cerevisiae Sla2p, interacts with membrane-associated huntingtin in the brain. Nature Genetics, 1997, 16, 44-53.	21.4	353