Takeshi Ueki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2068269/publications.pdf

Version: 2024-02-01

117571 123376 3,846 77 34 61 h-index citations g-index papers 81 81 81 3245 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Macromolecules in Ionic Liquids: Progress, Challenges, and Opportunities. Macromolecules, 2008, 41, 3739-3749.	2.2	576
2	Lower Critical Solution Temperature Behavior of Linear Polymers in Ionic Liquids and the Corresponding Volume Phase Transition of Polymer Gels. Langmuir, 2007, 23, 988-990.	1.6	157
3	Polymers in Ionic Liquids: Dawn of Neoteric Solvents and Innovative Materials. Bulletin of the Chemical Society of Japan, 2012, 85, 33-50.	2.0	146
4	Upper Critical Solution Temperature Behavior of Poly(N-isopropylacrylamide) in an Ionic Liquid and Preparation of Thermo-sensitive Nonvolatile Gels. Chemistry Letters, 2006, 35, 964-965.	0.7	141
5	Mechanically Tunable, Readily Processable Ion Gels by Self-Assembly of Block Copolymers in Ionic Liquids. Accounts of Chemical Research, 2016, 49, 2107-2114.	7.6	138
6	High-performance ion gel with tetra-PEG network. Soft Matter, 2012, 8, 1756-1759.	1.2	129
7	Heterogeneous Slow Dynamics of Imidazolium-Based Ionic Liquids Studied by Neutron Spin Echo. Journal of Physical Chemistry B, 2013, 117, 2773-2781.	1.2	122
8	Evolution of self-oscillating polymer gels as autonomous polymer systems. NPG Asia Materials, 2014, 6, e107-e107.	3.8	112
9	LCST-type liquid–liquid phase separation behaviour of poly(ethylene oxide) derivatives in an ionic liquid. Chemical Communications, 2008, , 4939.	2.2	109
10	Doubly Thermosensitive Self-Assembly of Diblock Copolymers in Ionic Liquids. Macromolecules, 2009, 42, 1315-1320.	2.2	88
11	Selfâ€Beating Artificial Cells: Design of Crossâ€Linked Polymersomes Showing Selfâ€Oscillating Motion. Advanced Materials, 2015, 27, 837-842.	11.1	87
12	Structural effects of polyethers and ionic liquids in their binary mixtures on lower critical solution temperature liquid-liquid phase separation. Polymer Journal, 2011, 43, 242-248.	1.3	79
13	UCST Phase Transition of Azobenzene-Containing Random Copolymer in an Ionic Liquid. Macromolecules, 2011, 44, 6908-6914.	2.2	76
14	Lower Critical Solution Temperature Phase Behavior of Linear Polymers in Imidazolium-Based Ionic Liquids: Effects of Structural Modifications. Langmuir, 2009, 25, 3820-3824.	1.6	72
15	Light-Controlled Reversible Micellization of a Diblock Copolymer in an Ionic Liquid. Macromolecules, 2012, 45, 7566-7573.	2.2	71
16	Difference in Lower Critical Solution Temperature Behavior between Random Copolymers and a Homopolymer Having Solvatophilic and Solvatophobic Structures in an Ionic Liquidâ€. Journal of Physical Chemistry B, 2007, 111, 4750-4754.	1.2	69
17	Photoreversible Gelation of a Triblock Copolymer in an Ionic Liquid. Angewandte Chemie - International Edition, 2015, 54, 3018-3022.	7.2	68
18	Self-oscillating micelles. Chemical Communications, 2013, 49, 6947.	2.2	67

#	Article	IF	CITATIONS
19	Stimuli-responsive polymers in ionic liquids. Polymer Journal, 2014, 46, 646-655.	1.3	66
20	Thermally Reversible Ion Gels with Photohealing Properties Based on Triblock Copolymer Self-Assembly. Macromolecules, 2015, 48, 5928-5933.	2.2	65
21	Selfâ€Oscillating Vesicles: Spontaneous Cyclic Structural Changes of Synthetic Diblock Copolymers. Angewandte Chemie - International Edition, 2014, 53, 11248-11252.	7.2	62
22	Structural aspects of the LCST phase behavior of poly(benzyl methacrylate) in room-temperature ionic liquid. Polymer, 2011, 52, 1589-1595.	1.8	58
23	Thermoreversible high-temperature gelation of an ionic liquid with poly(benzyl methacrylate-b-methyl) Tj ETQq1 1	0,784314 1.2	rggBT /Over
24	Amoeba-like self-oscillating polymeric fluids with autonomous sol-gel transition. Nature Communications, 2017, 8, 15862.	5.8	58
25	Modulation of Mesenchymal Stem Cells Mechanosensing at Fluid Interfaces by Tailored Selfâ€Assembled Protein Monolayers. Small, 2019, 15, e1804640.	5.2	58
26	Evolved Colloidosomes Undergoing Cellâ€like Autonomous Shape Oscillations with Buckling. Angewandte Chemie - International Edition, 2016, 55, 5179-5183.	7.2	57
27	Thermodynamic study on phase transitions of poly(benzyl methacrylate) in ionic liquid solvents. Pure and Applied Chemistry, 2009, 81, 1829-1841.	0.9	56
28	Photoisomerization-Induced Tunable LCST Phase Separation of Azobenzene-Containing Polymers in an Ionic Liquid. Langmuir, 2009, 25, 8845-8848.	1.6	55
29	Thermosensitive, Soft Glassy and Structural Colored Colloidal Array in Ionic Liquid: Colloidal Glass to Gel Transition. Langmuir, 2010, 26, 18031-18038.	1.6	52
30	Photo-Dimerization Induced Dynamic Viscoelastic Changes in ABA Triblock Copolymer-Based Hydrogels for 3D Cell Culture. Chemistry of Materials, 2016, 28, 6401-6408.	3.2	51
31	Autonomous viscosity oscillation via metallo-supramolecular terpyridine chemistry of branched poly(ethylene glycol) driven by the Belousov–Zhabotinsky reaction. Soft Matter, 2014, 10, 1349-1355.	1.2	48
32	Thermosensitive Self-Assembly of Diblock Copolymers with Lower Critical Micellization Temperatures in an Ionic Liquid. Macromolecules, 2009, 42, 6239-6244.	2.2	47
33	Hierarchical Sol–Gel Transition Induced by Thermosensitive Self-Assembly of an ABC Triblock Polymer in an Ionic Liquid. Macromolecules, 2016, 49, 1414-1423.	2.2	45
34	Structural Analysis of High Performance Ion-Gel Comprising Tetra-PEG Network. Macromolecules, 2012, 45, 3902-3909.	2.2	42
35	Recent aspects of self-oscillating polymeric materials: designing self-oscillating polymers coupled with supramolecular chemistry and ionic liquid science. Physical Chemistry Chemical Physics, 2014, 16, 10388-10397.	1.3	36
36	Belousov–Zhabotinsky Reaction in Protic Ionic Liquids. Angewandte Chemie - International Edition, 2012, 51, 11991-11994.	7.2	35

#	Article	IF	Citations
37	Block copolymer self-assembly in ionic liquids. Physical Chemistry Chemical Physics, 2018, 20, 25123-25139.	1.3	34
38	Structural Study on the UCST-Type Phase Separation of Poly(<i>N</i> -isopropylacrylamide) in Ionic Liquid. Macromolecules, 2013, 46, 1101-1106.	2.2	31
39	Specific Solvation of Benzyl Methacrylate in 1-Ethyl-3-methylimidazolium Bis(trifluoromethanesulfonyl)amide Ionic Liquid. Analytical Sciences, 2013, 29, 311-314.	0.8	27
40	Microscopic Structure of Solvated Poly(benzyl methacrylate) in an Imidazolium-Based Ionic Liquid: High-Energy X-ray Total Scattering and All-Atom MD Simulation Study. Macromolecules, 2017, 50, 4780-4786.	2.2	27
41	Electrical Communication between Glucose Oxidase and Electrodes Mediated by Phenothiazine-Labeled Poly(ethylene oxide) Bonded to Lysine Residues on the Enzyme Surface. Analytical Chemistry, 2003, 75, 910-917.	3.2	25
42	Microscopic insights into ion gel dynamics using neutron spectroscopy. Soft Matter, 2012, 8, 7888.	1.2	24
43	Self-oscillating AB diblock copolymer developed by post modification strategy. Chaos, 2015, 25, 064605.	1.0	24
44	Thermoreversible Nanogel Shuttle between Ionic Liquid and Aqueous Phases. Langmuir, 2013, 29, 13661-13665.	1.6	23
45	Tuning of Sol–Gel Transition Temperatures for Thermoreversible Ion Gels. Chemistry Letters, 2014, 43, 204-206.	0.7	23
46	Multiblock copolymers exhibiting spatio-temporal structure with autonomous viscosity oscillation. Scientific Reports, 2015, 5, 15792.	1.6	22
47	Fast electron transfer between glucose oxidase and electrodes via phenothiazine mediators with poly(ethylene oxide) spacers attached to the enzyme surface. Electrochemistry Communications, 2001, 3, 649-653.	2.3	21
48	Neutron scattering studies on short- and long-range layer structures and related dynamics in imidazolium-based ionic liquids. Journal of Chemical Physics, 2018, 149, 054502.	1.2	20
49	Precisely Tunable Sol–Gel Transition Temperature by Blending Thermoresponsive ABC Triblock Terpolymers. ACS Macro Letters, 2018, 7, 950-955.	2.3	20
50	Unlocking of interlocked heteropolymer gel by light: photoinduced volume phase transition in an ionic liquid from a metastable state to an equilibrium phase. Chemical Communications, 2012, 48, 5133.	2.2	19
51	Photocurable ABA triblock copolymer-based ion gels utilizing photodimerization of coumarin. RSC Advances, 2018, 8, 3418-3422.	1.7	19
52	Design of azobenzene-bearing hydrogel with photoswitchable mechanics driven by photo-induced phase transition for in vitro disease modeling. Acta Biomaterialia, 2021, 132, 103-113.	4.1	19
53	Thermosensitive Phase Separation Behavior of Poly(benzyl methacrylate)/Solvate Ionic Liquid Solutions. Langmuir, 2017, 33, 14105-14114.	1.6	17
54	Heat Capacities and Glass Transitions of Ion Gels. Journal of Physical Chemistry B, 2012, 116, 10935-10940.	1.2	16

#	Article	IF	Citations
55	SANS study on the solvated structure and molecular interactions of a thermo-responsive polymer in a room temperature ionic liquid. Physical Chemistry Chemical Physics, 2016, 18, 17881-17889.	1.3	15
56	Autonomous unimer-vesicle oscillation by totally synthetic diblock copolymers: effect of block length and polymer concentration on spatio-temporal structures. Soft Matter, 2017, 13, 4559-4568.	1.2	14
57	Comparison of Catalytic Electrochemistry of Glucose Oxidase between Covalently Modified and Freely Diffusing Phenothiazine-Labeled Poly(ethylene oxide) Mediator Systems. Journal of Physical Chemistry B, 2003, 107, 8834-8839.	1.2	13
58	Photoreversible Gelation of a Triblock Copolymer in an Ionic Liquid. Angewandte Chemie, 2015, 127, 3061-3065.	1.6	12
59	Fabrication of Selfâ€Oscillating Micelles with a Builtâ€In Oxidizing Agent. Angewandte Chemie - International Edition, 2020, 59, 3871-3875.	7.2	12
60	Direct visualization of swollen microgels by scanning electron microscopy using ionic liquids. Polymer Journal, 2016, 48, 273-279.	1.3	11
61	Chemomechanical Motion of a Selfâ€Oscillating Gel in a Protic Ionic Liquid. Angewandte Chemie - International Edition, 2018, 57, 16693-16697.	7.2	11
62	Evolved Colloidosomes Undergoing Cellâ€like Autonomous Shape Oscillations with Buckling. Angewandte Chemie, 2016, 128, 5265-5269.	1.6	10
63	Protic Ionic Liquids for the Belousov–Zhabotinsky Reaction: Aspects of the BZ Reaction in Protic Ionic Liquids and Its Use for the Autonomous Coil–Globule Oscillation of a Linear Polymer. Journal of Physical Chemistry B, 2017, 121, 4592-4599.	1.2	9
64	Macroscopic Adhesion of Thermoreversible ABC Triblock Copolymerâ€Based Hydrogels Via Boronic Acid–Sugar Complexation. Macromolecular Rapid Communications, 2018, 39, e1700835.	2.0	9
65	Spin glass behavior and magnetic boson peak in a structural glass of a magnetic ionic liquid. Scientific Reports, 2021, 11, 12098.	1.6	9
66	Self-Assembly of Thermoreversible Hydrogels via Molecular Recognition toward a Spatially Organized Coculture System. Biomacromolecules, 2017, 18, 281-287.	2.6	8
67	Electron Transfer Reactions of Glucose Oxidase at $Au(111)$ Electrodes Modified with Phenothiazine Derivatives. Analytical Chemistry, 2005, 77, 4142-4147.	3.2	7
68	Pressure Response of a Thermoresponsive Polymer in an Ionic Liquid. Macromolecules, 2016, 49, 8249-8253.	2.2	5
69	Electron Transfer Reaction of Glucose Oxidase Hybrids Modified with PhenothiazineviaPoly(ethylene) Tj ${\sf ETQq1}$	1 0.784314	rgBT /Overlo
70	Effect of a Modification Site on the Electron-Transfer Reaction of Glucose Oxidase Hybrids Modified with Phenothiazine via a Poly(ethylene oxide) Spacer. Langmuir, 2004, 20, 9177-9183.	1.6	4
71	Effect of substrate concentrations on the aggregation behavior and dynamic oscillatory properties of self-oscillating block copolymers. Physical Chemistry Chemical Physics, 2017, 19, 20627-20634.	1.3	4
72	Solvation Structure of Poly(benzyl methacrylate) in a Solvate Ionic Liquid: Preferential Solvation of Li–Glyme Complex Cation. Journal of Physical Chemistry B, 2019, 123, 4098-4107.	1.2	2

Takeshi Ueki

#	Article	IF	CITATIONS
73	Singleâ€Step Wetâ€Process Formation of Dualâ€Layer Superslippery Coating with Transparency and Robust Omniphobicity. Advanced Materials Interfaces, 0, , 2200497.	1.9	2
74	Chemomechanical Motion of a Selfâ€Oscillating Gel in a Protic Ionic Liquid. Angewandte Chemie, 2018, 130, 16935-16939.	1.6	1
75	Self-Oscillating Triblock Terpolymer Exhibiting an Autonomous Sol–Gel Oscillation with a Built-In Oxidizing Agent. Chemistry of Materials, 2022, 34, 6460-6467.	3.2	1
76	Titelbild: Evolved Colloidosomes Undergoing Cellâ€like Autonomous Shape Oscillations with Buckling (Angew. Chem. 17/2016). Angewandte Chemie, 2016, 128, 5183-5183.	1.6	0
77	Fabrication of Selfâ€Oscillating Micelles with a Builtâ€In Oxidizing Agent. Angewandte Chemie, 2020, 132, 3899-3903.	1.6	0