
Daniel Santhanaraj

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2068103/publications.pdf Version: 2024-02-01

DANIEL SANTHANADAL

#	Article	IF	CITATIONS
1	Cosolvent and Local Environment Effects of Vanadium Incorporation on MCM-41 Catalysts for Selective Oxidation Reactions. ACS Applied Nano Materials, 2022, 5, 288-302.	5.0	4
2	A comparative study of thermal- and electrocatalytic conversion of furfural: methylfuran as a primary and major product. Journal of Applied Electrochemistry, 2021, 51, 19-26.	2.9	14
3	Upgrading the Strategy of Multistage Torrefaction Liquid by the Selective Oxidation Reaction Route Using a Reusable MgO-Based Au/Al ₂ O ₃ Catalyst. Energy & Fuels, 2021, 35, 15831-15841.	5.1	3
4	Unravelling the cooperative role of lattice strain on MnO ₂ /TiO ₂ and MnO ₂ /ZnO catalysts for the fast decomposition of hydrogen peroxide. New Journal of Chemistry, 2021, 45, 9944-9958.	2.8	2
5	Synthesis of α,β―and βâ€Unsaturated Acids and Hydroxy Acids by Tandem Oxidation, Epoxidation, and Hydrolysis/Hydrogenation of Bioethanol Derivatives. Angewandte Chemie, 2020, 132, 7526-7530.	2.0	1
6	Synthesis of α,β―and βâ€Unsaturated Acids and Hydroxy Acids by Tandem Oxidation, Epoxidation, and Hydrolysis/Hydrogenation of Bioethanol Derivatives. Angewandte Chemie - International Edition, 2020, 59, 7456-7460.	13.8	8
7	Influence of lattice strain on Fe ₃ O ₄ @carbon catalyst for the destruction of organic dye in polluted water using a combined adsorption and Fenton process. RSC Advances, 2020, 10, 39146-39159.	3.6	4
8	A comparison study between V-SBA-15 and V-KIT-6 catalysts for selective oxidation of diphenylmethane. New Journal of Chemistry, 2019, 43, 11554-11563.	2.8	15
9	A detail kinetic study on vapour phase oxidation of diphenylmethane over mesoporous V-KIT-6 catalyst. Molecular Catalysis, 2017, 442, 1-11.	2.0	9
10	Synthesis of C ₄ and C ₈ Chemicals from Ethanol on MgOâ€incorporated Faujasite Catalysts with Balanced Confinement Effects and Basicity. ChemSusChem, 2016, 9, 736-748.	6.8	27
11	Gluconic Acid from Biomass Fast Pyrolysis Oils: Specialty Chemicals from the Thermochemical Conversion of Biomass. ChemSusChem, 2014, 7, 3132-3137.	6.8	36
12	Room temperature synthesized spherical V-MCM-41: a catalyst for vapour phase oxidation of diphenylmethane. Journal of Porous Materials, 2012, 19, 1027-1036.	2.6	4
13	Mo–Ni/Al-SBA-15 (Sulfide) Catalysts for Hydrodenitrogenation: Effect of Si/Al Ratio on Catalytic Activity. ACS Catalysis, 2012, 2, 127-134.	11.2	55
14	Structural and catalytic properties of V-SBA-15 for the vapor phase oxidation of diphenylmethane. Reaction Kinetics, Mechanisms and Catalysis, 2011, 104, 399-415.	1.7	10
15	Mn–MCM-41 molecular sieves: a selective gas-phase cyclohexanol oxidation catalyst. Reaction Kinetics, Mechanisms and Catalysis, 2010, 99, 439.	1.7	10

2