Marta Sendra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2067951/publications.pdf

Version: 2024-02-01

414414 394421 1,300 34 19 32 citations h-index g-index papers 34 34 34 1538 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Are the primary characteristics of polystyrene nanoplastics responsible for toxicity and ad/absorption in the marine diatom Phaeodactylum tricornutum?. Environmental Pollution, 2019, 249, 610-619.	7.5	122
2	An overview of the internalization and effects of microplastics and nanoplastics as pollutants of emerging concern in bivalves. Science of the Total Environment, 2021, 753, 142024.	8.0	103
3	Nanoplastics: From tissue accumulation to cell translocation into Mytilus galloprovincialis hemocytes. resilience of immune cells exposed to nanoplastics and nanoplastics plus Vibrio splendidus combination. Journal of Hazardous Materials, 2020, 388, 121788.	12.4	97
4	Direct and indirect effects of silver nanoparticles on freshwater and marine microalgae (Chlamydomonas reinhardtii and Phaeodactylum tricornutum). Chemosphere, 2017, 179, 279-289.	8.2	96
5	Toxicity of TiO2, in nanoparticle or bulk form to freshwater and marine microalgae under visible light and UV-A radiation. Environmental Pollution, 2017, 227, 39-48.	7.5	91
6	Effects of TiO2 nanoparticles and sunscreens on coastal marine microalgae: Ultraviolet radiation is key variable for toxicity assessment. Environment International, 2017, 98, 62-68.	10.0	81
7	Size matters: Zebrafish (Danio rerio) as a model to study toxicity of nanoplastics from cells to the whole organism. Environmental Pollution, 2021, 268, 115769.	7.5	71
8	Homoagglomeration and heteroagglomeration of TiO 2 , in nanoparticle and bulk form, onto freshwater and marine microalgae. Science of the Total Environment, 2017, 592, 403-411.	8.0	56
9	CeO 2 NPs, toxic or protective to phytoplankton? Charge of nanoparticles and cell wall as factors which cause changes in cell complexity. Science of the Total Environment, 2017, 590-591, 304-315.	8.0	54
10	Effect of erythromycin and modulating effect of CeO2 NPs on the toxicity exerted by the antibiotic on the microalgae Chlamydomonas reinhardtii and Phaeodactylum tricornutum. Environmental Pollution, 2018, 242, 357-366.	7.5	50
11	Microplastics do not affect standard ecotoxicological endpoints in marine unicellular organisms. Marine Pollution Bulletin, 2019, 143, 140-143.	5.0	49
12	Is the cell wall of marine phytoplankton a protective barrier or a nanoparticle interaction site? Toxicological responses of Chlorella autotrophica and Dunaliella salina to Ag and CeO2 nanoparticles. Ecological Indicators, 2018, 95, 1053-1067.	6. 3	48
13	An integrative toxicogenomic analysis of plastic additives. Journal of Hazardous Materials, 2021, 409, 124975.	12.4	48
14	Immunotoxicity of polystyrene nanoplastics in different hemocyte subpopulations of Mytilus galloprovincialis. Scientific Reports, 2020, 10, 8637.	3.3	47
15	Cytotoxicity of CeO2 nanoparticles using in vitro assay with Mytilus galloprovincialis hemocytes: Relevance of zeta potential, shape and biocorona formation. Aquatic Toxicology, 2018, 200, 13-20.	4.0	39
16	Ingestion and bioaccumulation of polystyrene nanoplastics and their effects on the microalgal feeding of Artemia franciscana. Ecotoxicology and Environmental Safety, 2020, 188, 109853.	6.0	37
17	Are the TiO2 NPs a "Trojan horse―for personal care products (PCPs) in the clam Ruditapes philippinarum?. Chemosphere, 2017, 185, 192-204.	8.2	33
18	Genomics and immunity of the Mediterranean mussel Mytilus galloprovincialis in a changing environment. Fish and Shellfish Immunology, 2019, 90, 440-445.	3.6	28

#	Article	IF	CITATIONS
19	Surgical face masks as a source of emergent pollutants in aquatic systems: Analysis of their degradation product effects in Danio rerio through RNA-Seq Journal of Hazardous Materials, 2022, 428, 128186.	12.4	25
20	Not Only Toxic but Repellent: What Can Organisms' Responses Tell Us about Contamination and What Are the Ecological Consequences When They Flee from an Environment?. Toxics, 2020, 8, 118.	3.7	21
21	Will temperature and salinity changes exacerbate the effects of seawater acidification on the marine microalga Phaeodactylum tricornutum?. Science of the Total Environment, 2018, 634, 87-94.	8.0	16
22	In vivo immunomodulatory and antioxidant properties of nanoceria (nCeO2) in the marine mussel Mytilus galloprovincialis. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2019, 219, 95-102.	2.6	13
23	Comparative effects of seawater acidification on microalgae: Single and multispecies toxicity tests. Science of the Total Environment, 2019, 649, 224-232.	8.0	13
24	Immune-responsive gene 1 (IRG1) and dimethyl itaconate are involved in the mussel immune response. Fish and Shellfish Immunology, 2020, 106, 645-655.	3.6	11
25	Coastal gradients of small microplastics and associated pollutants influenced by estuarine sources. Marine Pollution Bulletin, 2022, 174, 113292.	5.0	11
26	Biochemical response of the clam Ruditapes philippinarum to silver (AgD and AgNPs) exposure and application of an integrated biomarker response approach. Marine Environmental Research, 2019, 152, 104783.	2.5	10
27	Products released from surgical face masks can provoke cytotoxicity in the marine diatom Phaeodactylum tricornutum. Science of the Total Environment, 2022, 841, 156611.	8.0	10
28	Erythromycin sensitivity across different taxa of marine phytoplankton. A novel approach to sensitivity of microalgae and the evolutionary history of the 23S gene. Aquatic Toxicology, 2018, 204, 190-196.	4.0	9
29	Could Contamination Avoidance Be an Endpoint That Protects the Environment? An Overview on How Species Respond to Copper, Glyphosate, and Silver Nanoparticles. Toxics, 2021, 9, 301.	3.7	8
30	Ocean-Atmosphere CO2 Fluxes in the North Atlantic Subtropical Gyre: Association with Biochemical and Physical Factors during Spring. Journal of Marine Science and Engineering, 2015, 3, 891-905.	2.6	1
31	Environmental Risk Assessment of Sunscreens. Handbook of Environmental Chemistry, 2020, , 163-184.	0.4	1
32	Are habitable clean areas in heterogeneously contaminated landscapes functioning as escape zones for fish populations to alleviate stress?. Science of the Total Environment, 2022, 818, 151713.	8.0	1
33	Pharmaceuticals and aquatic benthic organisms: Toxicity and accumulation. , 2021, , 501-519.		0
34	Advanced analytical techniques for physico-chemical characterization of nano-materials., 2022,, 79-104.		0