Hrvoje Kusic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2067430/publications.pdf

Version: 2024-02-01

76 papers 2,684 citations

218677 26 h-index 197818 49 g-index

78 all docs 78 docs citations

78 times ranked 2959 citing authors

#	Article	IF	CITATIONS
1	Biotreatment strategies for the removal of microplastics from freshwater systems. A review. Environmental Chemistry Letters, 2022, 20, 1377-1402.	16.2	31
2	Enhanced photo-degradation of N-methyl-2-pyrrolidone (NMP): Influence of matrix components, kinetic study and artificial neural network modelling. Journal of Hazardous Materials, 2022, 434, 128807.	12.4	13
3	Structural features promoting adsorption of contaminants of emerging concern onto TiO2 P25: experimental and computational approaches. Environmental Science and Pollution Research, 2022, 29, 87628-87644.	5.3	2
4	Performance of UV/acetylacetone process for saline dye wastewater treatment: Kinetics and mechanism. Journal of Hazardous Materials, 2021, 406, 124774.	12.4	17
5	Influence of Photo-Deposited Pt and Pd onto Chromium Doped TiO2 Nanotubes in Photo-Electrochemical Water Splitting for Hydrogen Generation. Catalysts, 2021, 11, 212.	3.5	9
6	Environmental aspects of UV-C-based processes for the treatment of oxytetracycline in water. Environmental Pollution, 2021, 277, 116797.	7. 5	16
7	Solar Light Activation of Persulfate by TiO ₂ /Fe ₂ O ₃ Layered Composite Films for Degradation of Amoxicillin: Degradation Mechanism, Matrix Effects, and Toxicity Assessments. Advanced Sustainable Systems, 2021, 5, 2100119.	5.3	17
8	Ecotoxicological Determination of Microplastic Toxicity on Algae Chlorella sp.: Response Surface Modeling Approach. Water, Air, and Soil Pollution, 2021, 232, 1.	2.4	12
9	Tailored BiVO4 for enhanced visible-light photocatalytic performance. Journal of Environmental Chemical Engineering, 2021, 9, 106025.	6.7	22
10	In-situ high temperature XRD study on thermally induced phase changes of BiVO4: The formation of an iso-type heterojunction. Materials Letters, 2021, 305, 130816.	2.6	4
11	Ecotoxicological Assessment of Microplastics in Freshwater Sources—A Review. Water (Switzerland), 2021, 13, 56.	2.7	44
12	Degradation of polar and non-polar pharmaceutical pollutants in water by solar assisted photocatalysis using hydrothermal TiO2-SnS2. Chemical Engineering Journal, 2020, 382, 122826.	12.7	37
13	Structural features of contaminants of emerging concern behind empirical parameters of mechanistic models describing their photooxidative degradation. Journal of Water Process Engineering, 2020, 33, 101053.	5.6	7
14	Recent Achievements in Development of TiO2-Based Composite Photocatalytic Materials for Solar Driven Water Purification and Water Splitting. Materials, 2020, 13, 1338.	2.9	76
15	Solar-active photocatalysts based on TiO2 and conductive polymer PEDOT for the removal of bisphenol A. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 396, 112546.	3.9	19
16	One-Pot Synthesis of Sulfur-Doped TiO2/Reduced Graphene Oxide Composite (S-TiO2/rGO) with Improved Photocatalytic Activity for the Removal of Diclofenac from Water. Materials, 2020, 13, 1621.	2.9	23
17	Key structural features promoting radical driven degradation of emerging contaminants in water. Environment International, 2019, 124, 38-48.	10.0	24
18	Modeling of Photooxidative Degradation of Aromatics in Water Matrix: A Quantitative Structurean Property Relationship Approach. ACS Symposium Series, 2019, , 257-292.	0.5	0

#	Article	IF	Citations
19	Toxicity of aromatic pollutants and photooxidative intermediates in water: A QSAR study. Ecotoxicology and Environmental Safety, 2019, 169, 918-927.	6.0	28
20	Reactivation and reuse of TiO2-SnS2 composite catalyst for solar-driven water treatment. Environmental Science and Pollution Research, 2018, 25, 2538-2551.	5.3	8
21	Influence of process parameters on the effectiveness of photooxidative treatment of pharmaceuticals. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2018, 53, 338-351.	1.7	15
22	8. Water and wastewater treatment engineering. , 2018, , 241-276.		0
23	Influence of process parameters on the effectiveness of photooxidative treatment of emerging contaminants in water. AIP Conference Proceedings, 2018, , .	0.4	0
24	AOP degradation of emerging contaminants in water: Prediction of second order kinetics by QSPR modeling. AIP Conference Proceedings, $2018, \ldots$	0.4	0
25	Elucidating the Photocatalytic Behavior of TiO2-SnS2 Composites Based on Their Energy Band Structure. Materials, 2018, 11, 1041.	2.9	17
26	Solar driven degradation of $17\hat{l}^2$ -estradiol using composite photocatalytic materials and artificial irradiation source: Influence of process and water matrix parameters. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 361, 48-61.	3.9	17
27	Photooxidative Degradation of Pesticides in Water; Response Surface Modeling Approach. Journal of Advanced Oxidation Technologies, 2017, 20, .	0.5	4
28	Prediction of biodegradability of aromatics in water using QSAR modeling. Ecotoxicology and Environmental Safety, 2017, 139, 139-149.	6.0	20
29	TiO2-SnS2 nanocomposites: solar-active photocatalytic materials for water treatment. Environmental Science and Pollution Research, 2017, 24, 19965-19979.	5.3	16
30	Reuse of TiO 2 -based catalyst for solar driven water treatment; thermal and chemical reactivation. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 333, 117-129.	3.9	18
31	UV photolysis of diclofenac in water; kinetics, degradation pathway and environmental aspects. Environmental Science and Pollution Research, 2016, 23, 14908-14917.	5.3	42
32	Solar-driven photocatalytic treatment of diclofenac using immobilized TiO2-based zeolite composites. Environmental Science and Pollution Research, 2016, 23, 17982-17994.	5.3	34
33	Diclofenac removal by simulated solar assisted photocatalysis using TiO2-based zeolite catalyst; mechanisms, pathways and environmental aspects. Chemical Engineering Journal, 2016, 304, 289-302.	12.7	113
34	Comparative analysis of UV-C/H2O2 and UV-A/TiO2 processes for the degradation of diclofenac in water. Reaction Kinetics, Mechanisms and Catalysis, 2016, 118, 451-462.	1.7	15
35	Comparative study on photooxidative treatment of diclofenac: Response surface and mechanistic modeling. Journal of Water Process Engineering, 2016, 10, 78-88.	5.6	18
36	Removal of diclofenac from water by zeolite-assisted advanced oxidation processes. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 321, 238-247.	3.9	38

#	Article	IF	Citations
37	MINERALIZATION OF SALICYLIC ACID IN WATER BY CATALYTIC OZONATION. Environmental Engineering and Management Journal, 2016, 15, 151-166.	0.6	2
38	Modeling Photo-oxidative Degradation of Aromatics in Water. Optimization Study Using Response Surface and Structural Relationship Approaches. Industrial & Engineering Chemistry Research, 2015, 54, 5427-5441.	3.7	12
39	Prediction of key structural features responsible for aromaticity of single-benzene ring pollutants and their photooxidative intermediates. Chemical Engineering Journal, 2015, 276, 261-273.	12.7	12
40	Structural Influence on Photooxidative Degradation of Halogenated Phenols. Water, Air, and Soil Pollution, 2014, 225, 1.	2.4	13
41	Photooxidative Degradation of Aromatic Carboxylic Acids in Water: Influence of Hydroxyl Substituents. Industrial & Degradation of Aromatic Carboxylic Acids in Water: Influence of Hydroxyl Substituents. Industrial & Degradation of Aromatic Carboxylic Acids in Water: Influence of Hydroxyl Substitution of Aromatic Carboxylic Acids in Water: Influence of Hydroxyl Substitution of Aromatic Carboxylic Acids in Water: Influence of Hydroxyl Substitution of Aromatic Carboxylic Acids in Water: Influence of Hydroxyl Substitution of Aromatic Carboxylic Acids in Water: Influence of Hydroxyl Substitution of Aromatic Carboxylic Acids in Water: Influence of Hydroxyl Substitution of Aromatic Carboxylic Acids in Water: Influence of Hydroxyl Substitution of Aromatic Carboxylic Acids in Water: Influence of Hydroxyl Substitution of Aromatic Carboxylic Acids in Water: Influence of Hydroxyl Substitution of Aromatic Carboxylic Acids in Water: Influence of Hydroxyl Substitution of Aromatic Carboxylic Acids in Water: Influence of Hydroxyl Substitution of Aromatic Carboxylic Acids in Water: Influence of Hydroxyl Substitution of Aromatic Carboxylic Acids in Water: Influence of Hydroxyl Substitution of Aromatic Carboxylic Acids in Water: Influence of Hydroxyl Substitution of Aromatic Carboxylic Acids in Water: Influence of Hydroxyl Substitution of Aromatic Carboxylic Acids in Water: Influence of Hydroxyl Substitution of Aromatic Carboxylic Acids in Water: Influence of Hydroxyl Substitution of Aromatic Carboxylic Acids in Water: Influence of Hydroxyl Substitution of Aromatic Carboxylic Acids in Water: Influence of Hydroxyl Substitution of Aromatic Carboxylic Acids in Water: Influence of Hydroxyl Substitution of Aromatic Carboxylic Acids in Water: Influence of Aromatic Carboxylic Acids in Water: Influence of Aromatic Carboxylic Acids in Water: Influence Ocids in W	3.7	24
42	Modeling of photooxidative degradation of aromatics in water matrix; combination of mechanistic and structural-relationship approach. Chemical Engineering Journal, 2014, 257, 229-241.	12.7	32
43	Structural aspects of the degradation of sulfoaromatics by the UV/H2O2 process. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 293, 1-11.	3.9	20
44	ADVANCED OXIDATION OF AN AZO DYE AND ITS SYNTHESIS INTERMEDIATES IN AQUEOUS SOLUTION: EFFECT OF FENTON TREATMENT ON MINERALIZATION, BIODEGRADABILITY AND TOXICITY. Environmental Engineering and Management Journal, 2014, 13, 2561-2571.	0.6	7
45	Environmental aspects of photooxidative treatment of phenolic compounds. Journal of Hazardous Materials, 2013, 262, 377-386.	12.4	36
46	Modeling of photodegradation kinetics of aromatic pollutants in water matrix. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 271, 65-76.	3.9	13
47	Environmental aspects on the photodegradation of reactive triazine dyes in aqueous media. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 252, 131-144.	3.9	33
48	UV-assisted persulfate oxidation: the influence of cation type in the persulfate salt on the degradation kinetics of an azo dye pollutant. Reaction Kinetics, Mechanisms and Catalysis, 2013, 108, 17-39.	1.7	18
49	Altered toxicity of organic pollutants in water originated from simultaneous exposure to UV photolysis and CdSe/ZnS quantum dots. Chemosphere, 2012, 89, 900-906.	8.2	11
50	Application of Sensitivity and Flux Analyses for the Reduction of Model Predicting the Photooxidative Degradation of an Azo Dye in Aqueous Media. Environmental Modeling and Assessment, 2012, 17, 653-671.	2.2	5
51	Photooxidation of benzene-structured compounds: Influence of substituent type on degradation kinetic and sum water parameters. Water Research, 2012, 46, 3074-3084.	11.3	20
52	Influence of substituent type and position on photooxidation of phenolic compounds: Response surface methodology approach. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 242, 1-12.	3.9	12
53	Role of quantum dots nanoparticles in the chemical treatment of colored wastewater: Catalysts or additional pollutants. Journal of Environmental Sciences, 2011, 23, 1479-1485.	6.1	13
54	Treatment of chlorophenols in water matrix by UV/ferrioxalate system: Part I. Key process parameter evaluation by response surface methodology. Desalination, 2011, 279, 258-268.	8.2	17

#	Article	lF	Citations
55	Treatment of chlorophenols in water matrix by UV/ferri-oxalate system: Part II. Degradation mechanisms and ecological parameters evaluation. Desalination, 2011, 280, 208-216.	8.2	18
56	Treatment of simulated industrial wastewater by photo-Fenton process: Part II. The development of mechanistic model. Chemical Engineering Journal, 2011, 173, 280-289.	12.7	38
57	Treatment of simulated industrial wastewater by photo-Fenton process. Part I: The optimization of process parameters using design of experiments (DOE). Chemical Engineering Journal, 2011, 173, 267-279.	12.7	59
58	Modeling of iron activated persulfate oxidation treating reactive azo dye in water matrix. Chemical Engineering Journal, 2011, 172, 109-121.	12.7	182
59	Photooxidation processes for an azo dye in aqueous media: Modeling of degradation kinetic and ecological parameters evaluation. Journal of Hazardous Materials, 2011, 185, 1558-1568.	12.4	43
60	Treatment of Chlorophenols by UV-Based Processes: Correlation of Oxidation By-Products, Wastewater Parameters, and Toxicity. Journal of Environmental Engineering, ASCE, 2011, 137, 639-649.	1.4	24
61	The comparison of photooxidation processes for the minimization of organic load of colored wastewater applying the response surface methodology. Journal of Hazardous Materials, 2010, 183, 189-202.	12.4	24
62	Degradation of chlorinated hydrocarbons by UV/H2O2: The application of experimental design and kinetic modeling approach. Chemical Engineering Journal, 2010, 158, 154-166.	12.7	65
63	Heterogeneous Fenton type processes for the degradation of organic dye pollutant in water — The application of zeolite assisted AOPs. Desalination, 2010, 257, 22-29.	8.2	154
64	QSAR modeling of acute toxicity on mammals caused by aromatic compounds: the case study using oral LD50 for rats. Journal of Environmental Monitoring, 2010, 12, 1037.	2.1	28
65	Modeling dye degradation kinetic using dark- and photo-Fenton type processes. Chemical Engineering Journal, 2009, 155, 144-154.	12.7	42
66	Prediction of rate constants for radical degradation of aromatic pollutants in water matrix: A QSAR study. Chemosphere, 2009, 75, 1128-1134.	8.2	122
67	Fenton type processes for minimization of organic content in coloured wastewaters. Part II: Combination with zeolites. Dyes and Pigments, 2007, 74, 388-395.	3.7	21
68	Fenton type processes for minimization of organic content in coloured wastewaters: Part I: Processes optimization. Dyes and Pigments, 2007, 74, 380-387.	3.7	78
69	Fe-exchanged zeolite as the effective heterogeneous Fenton-type catalyst for the organic pollutant minimization: UV irradiation assistance. Chemosphere, 2006, 65, 65-73.	8.2	72
70	UV-based processes for reactive azo dye mineralization. Water Research, 2006, 40, 525-532.	11.3	75
71	Advanced Oxidation Processes in Azo Dye Wastewater Treatment. Water Environment Research, 2006, 78, 572-579.	2.7	46
72	Minimization of organic pollutant content in aqueous solution by means of AOPs: UV- and ozone-based technologies. Chemical Engineering Journal, 2006, 123, 127-137.	12.7	159

HRVOJE KUSIC

#	Article	lF	CITATION
73	Azo dye degradation using Fenton type processes assisted by UV irradiation: A kinetic study. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 181, 195-202.	3.9	129
74	Photo-assisted Fenton type processes for the degradation of phenol: A kinetic study. Journal of Hazardous Materials, 2006, 136, 632-644.	12.4	163
75	Hybrid Gas/Liquid Electrical Discharge Reactors with Zeolites for Colored Wastewater Degradation. Journal of Advanced Oxidation Technologies, 2005, 8, .	0.5	3
76	Decomposition of phenol by hybrid gas/liquid electrical discharge reactors with zeolite catalysts. Journal of Hazardous Materials, 2005, 125, 190-200.	12.4	63