Giuseppe Caputo

List of Publications by Citations

Source: https://exaly.com/author-pdf/2067177/giuseppe-caputo-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

21 526 13 22 g-index

23 549 4.8 2.9 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
21	Highly bright and photostable cyanine dye-doped silica nanoparticles for optical imaging: Photophysical characterization and cell tests. <i>Dyes and Pigments</i> , 2010 , 84, 121-127	4.6	79
20	Biocompatibility, endocytosis, and intracellular trafficking of mesoporous silica and polystyrene nanoparticles in ovarian cancer cells: effects of size and surface charge groups. <i>International Journal of Nanomedicine</i> , 2012 , 7, 4147-58	7.3	78
19	Solvent effect on indocyanine dyes: A computational approach. <i>Chemical Physics</i> , 2006 , 330, 52-59	2.3	50
18	Hybrid CyanineBilica Nanoparticles: Homogeneous Photoemission Behavior of Entrapped Fluorophores and Consequent High Brightness Enhancement. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 21048-21053	3.8	35
17	Fluorescent silica nanoparticles improve optical imaging of stem cells allowing direct discrimination between live and early-stage apoptotic cells. <i>Small</i> , 2012 , 8, 3192-200	11	33
16	Molecular Engineering of Hybrid Dyeßilica Fluorescent Nanoparticles: Influence of the Dye Structure on the Distribution of Fluorophores and Consequent Photoemission Brightness. <i>Chemistry of Materials</i> , 2012 , 24, 2792-2801	9.6	33
15	Combined experimental and theoretical investigation of the hemi-squaraine/TiO2 interface for dye sensitized solar cells. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 7198-203	3.6	30
14	Novel heptamethine cyanine dyes with large Stokels shift for biological applications in the near infrared. <i>Journal of Fluorescence</i> , 2006 , 16, 221-5	2.4	30
13	Photoactive hybrid nanomaterials: indocyanine immobilized in mesoporous MCM-41 for "in-cell" bioimaging. <i>ACS Applied Materials & Material</i>	9.5	28
12	Synthesis, Electrochemical and Electrogenerated Chemiluminescence Studies of Ruthenium(II) Bis(2,2?-bipyridyl){2-(4-methylpyridin-2-yl)benzo[d]-X-azole} Complexes. <i>European Journal of Inorganic Chemistry</i> , 2006 , 2006, 2839-2849	2.3	23
11	Bright photoluminescent hybrid mesostructured silica nanoparticles. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 10015-21	3.6	18
10	Labeling and exocytosis of secretory compartments in RBL mastocytes by polystyrene and mesoporous silica nanoparticles. <i>International Journal of Nanomedicine</i> , 2012 , 7, 1829-40	7.3	15
9	Primary amino-functionalized N-heterocyclic carbene ligands as support for Au(I) Au(I) interactions: structural, electrochemical, spectroscopic and computational studies of the dinuclear [Au2(NH2(CH2)2imMe)2][NO3]2. <i>Dalton Transactions</i> , 2012 , 41, 2445-55	4.3	14
8	The design, synthesis and characterization of a novel acceptor for real time polymerase chain reaction using both computational and experimental approaches. <i>Dyes and Pigments</i> , 2009 , 83, 111-120	4.6	11
7	An optimized optrode for continuous potassium monitoring in whole blood. <i>Analytica Chimica Acta</i> , 1999 , 401, 129-136	6.6	10
6	The protective effect of the mesoporous host on the photo oxidation of fluorescent guests: a UV-Vis spectroscopy study. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 12172-7	3.6	8
5	Structural characterisation of Nitrazine Yellow by NMR spectroscopy. <i>Dyes and Pigments</i> , 2003 , 57, 87-9	5 4.6	8

LIST OF PUBLICATIONS

4	Photoactive Ru complex embedded in mesostructured MCM-41 nanoparticles. <i>Journal of Fluorescence</i> , 2011 , 21, 901-9	2.4	7
3	Chemichromic azodye from 2,4-dinitrobenzenediazonium o-benzenedisulfonimide and Eacid for monitoring blood parameters: structural study and synthesis optimisation. <i>Dyes and Pigments</i> , 2002 , 54, 131-140	4.6	6
2	Fast TiO2Sensitization Using the Semisquaric Acid as Anchoring Group. <i>International Journal of Photoenergy</i> , 2013 , 2013, 1-8	2.1	4
1	Behaviour of fluorescence emission of cyanine dyes, cyanine based fluorescent nanoparticles and CdSe/ZnS quantum dots in water solution upon specific thermal treatments. <i>Journal of Fluorescence</i> , 2011 , 21, 929-36	2.4	4