
Scott H Watterson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2067077/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Driving Potency with Rotationally Stable Atropisomers: Discovery of Pyridopyrimidinedione-Carbazole Inhibitors of BTK. ACS Medicinal Chemistry Letters, 2020, 11, 2195-2203.	2.8	6
2	Discovery of Branebrutinib (BMS-986195): A Strategy for Identifying a Highly Potent and Selective Covalent Inhibitor Providing Rapid in Vivo Inactivation of Bruton's Tyrosine Kinase (BTK). Journal of Medicinal Chemistry, 2019, 62, 3228-3250.	6.4	78
3	Separation of Bruton's tyrosine kinase inhibitor atropisomers by supercritical fluid chromatography. Journal of Chromatography A, 2019, 1586, 106-115.	3.7	13
4	ldentification of a Potent, Selective, and Efficacious Phosphatidylinositol 3-Kinase δ (PI3Kδ) Inhibitor for the Treatment of Immunological Disorders. Journal of Medicinal Chemistry, 2017, 60, 5193-5208.	6.4	22
5	Bruton's tyrosine kinase inhibitor BMS-986142 in experimental models of rheumatoid arthritis enhances efficacy of agents representing clinical standard-of-care. PLoS ONE, 2017, 12, e0181782.	2.5	47
6	ldentification and synthesis of potent and selective pyridyl-isoxazole based agonists of sphingosine-1-phosphate 1 (S1P1). Bioorganic and Medicinal Chemistry Letters, 2016, 26, 2470-2474.	2.2	6
7	An Efficient Scale-Up Synthesis of BMS-520, a Potent and Selective Isoxazole-Containing S1P ₁ Receptor Agonist. Organic Process Research and Development, 2016, 20, 989-995.	2.7	15
8	ldentification of Tricyclic Agonists of Sphingosine-1-phosphate Receptor 1 (S1P ₁) Employing Ligand-Based Drug Design. Journal of Medicinal Chemistry, 2016, 59, 9837-9854.	6.4	8
9	Discovery of 6-Fluoro-5-(<i>R</i>)-(3-(<i>S</i>)-(8-fluoro-1-methyl-2,4-dioxo-1,2-dihydroquinazolin-3(4 <i>H</i>)-yl)-2-methylpl (BMS-986142): A Reversible Inhibitor of Bruton's Tyrosine Kinase (BTK) Conformationally Constrained by Two Locked Atropisomers, Iournal of Medicinal Chemistry, 2016, 59, 9173-9200.	nenyl)-2-(<	i>\$√i>)-(2-h 111
10	Discovery and Structure–Activity Relationship (SAR) of a Series of Ethanolamine-Based Direct-Acting Agonists of Sphingosine-1-phosphate (S1P ₁). Journal of Medicinal Chemistry, 2016, 59, 6248-6264.	6.4	22
11	Potent and Selective Agonists of Sphingosine 1-Phosphate 1 (S1P ₁): Discovery and SAR of a Novel Isoxazole Based Series. Journal of Medicinal Chemistry, 2016, 59, 2820-2840.	6.4	20
12	Novel tricyclic inhibitors of IKK2: Discovery and SAR leading to the identification of 2-methoxy-N-((6-(1-methyl-4-(methylamino)-1,6-dihydroimidazo[4,5-d]pyrrolo[2,3-b]pyridin-7-yl)pyridin-2-yl)meth (BMS-066). Bioorganic and Medicinal Chemistry Letters, 2011, 21, 7006-7012.	nyl):az etarr	nide
13	Imidazo[4,5-d]thiazolo[5,4-b]pyridine based inhibitors of IKK2: Synthesis, SAR, PK/PD and activity in a preclinical model of rheumatoid arthritis. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 383-386.	2.2	11
14	A New and Efficient Synthesis of 6-[(5 <i>S</i> ,9 <i>R</i>)-9-(4-Cyanophenyl)-3-(3,5-dichlorophenyl)-1-methyl-2,4-dioxo-1,3,7-triazaspiro[4.4]non-7 Acid, a Potent LFA-1/ICAM Inhibitor. Organic Process Research and Development, 2010, 14, 936-938.	⁷ -y 일.n icotir	nic4
15	Small Molecule Antagonist of Leukocyte Function Associated Antigen-1 (LFA-1): Structureâ [*] Activity Relationships Leading to the Identification of 6-((5S,9R)-9-(4-Cyanophenyl)-3-(3,5-dichlorophenyl)-1-methyl-2,4-dioxo-1,3,7-triazaspiro[4.4]nonan-7-yl)nicotinic Acid (BMS-688521). Journal of Medicinal Chemistry. 2010, 53, 3814-3830.	6.4	40
16	Periodic, Partial Inhibition of IκB Kinase β-Mediated Signaling Yields Therapeutic Benefit in Preclinical Models of Rheumatoid Arthritis. Journal of Pharmacology and Experimental Therapeutics, 2009, 331, 349-360.	2.5	26
17	Synthesis, initial SAR and biological evaluation of 1,6-dihydroimidazo[4,5-d]pyrrolo[2,3-b]pyridin-4-amine derived inhibitors of lκB kinase. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 2646-2649.	2.2	19
18	Novel Tricyclic Inhibitors of lκB Kinase. Journal of Medicinal Chemistry, 2009, 52, 1994-2005.	6.4	25

#	Article	IF	CITATIONS
19	Acridone-Based Inhibitors of Inosine 5â€ [~] -Monophosphate Dehydrogenase:  Discovery and SAR Leading to the Identification of N-(2-(6-(4-Ethylpiperazin-1-yl)pyridin-3-yl)propan-2-yl)-2-fluoro-9-oxo-9,10-dihydroacridine-3-carboxamide (BMS-566419). Journal of Medicinal Chemistry, 2007, 50, 3730-3742.	6.4	50
20	Novel Amide-Based Inhibitors of Inosine 5′-Monophosphate Dehydrogenase ChemInform, 2003, 34, no.	0.0	0
21	Novel Inhibitors of IMPDH: A Highly Potent and Selective Quinolone-Based Series. ChemInform, 2003, 34, no.	0.0	0
22	Phenylsulfonyl Ene—Allenes as Efficient Precursors to Bicyclic Systems via Intramolecular [2 + 2]-Cycloaddition Reactions ChemInform, 2003, 34, no.	0.0	0
23	Novel inhibitors of IMPDH. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 543-546.	2.2	27
24	Quinolone-Based IMPDH inhibitors: introduction of basic residues on ring D and SAR of the corresponding mono, di and benzofused analogues. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 547-551.	2.2	12
25	Inhibitors of inosine monophosphate dehydrogenase: SARs about the N-[3-Methoxy-4-(5-oxazolyl)phenyl moiety. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 2059-2063.	2.2	28
26	3-Cyanoindole-based inhibitors of inosine monophosphate dehydrogenase: synthesis and initial structure–Activity relationships. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 3557-3560.	2.2	33
27	Identification of novel and potent isoquinoline aminooxazole-Based IMPDH inhibitors. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 1345-1348.	2.2	27
28	Novel indole-based inhibitors of IMPDH: introduction of hydrogen bond acceptors at indole C-3. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 1273-1276.	2.2	40
29	Phenylsulfonyl Eneâ^Allenes as Efficient Precursors to Bicyclic Systems via Intramolecular [2 + 2]-Cycloaddition Reactions. Journal of Organic Chemistry, 2003, 68, 6238-6250.	3.2	66
30	Discovery ofN-[2-[2-[[3-Methoxy-4-(5-oxazolyl)phenyl]amino]-5-oxazolyl]phenyl]-N-methyl-4- morpholineacetamide as a Novel and Potent Inhibitor of Inosine Monophosphate Dehydrogenase with Excellent in Vivo Activity. Journal of Medicinal Chemistry, 2002, 45, 2127-2130.	6.4	44
31	Rapid synthesis of triazine inhibitors of inosine monophosphate dehydrogenase. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 2137-2140.	2.2	42
32	Novel amide-based inhibitors of inosine 5′-monophosphate dehydrogenase. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 2879-2882.	2.2	16
33	A survey of cyclic replacements for the central diamide moiety of inhibitors of inosine monophosphate dehydrogenase. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 3125-3128.	2.2	16
34	Novel diamide-Based inhibitors of IMPDH. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 1323-1326.	2.2	24
35	Novel guanidine-Based inhibitors of inosine monophosphate dehydrogenase. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 2931-2934.	2.2	26
36	The Total Synthesis of (±)-Ginkgolide B. Journal of the American Chemical Society, 2000, 122, 8453-8463.	13.7	102

SCOTT H WATTERSON

#	Article	IF	CITATIONS
37	Total Synthesis of (±)-Ginkgolide B. Journal of the American Chemical Society, 1999, 121, 10249-10250.	13.7	48
38	Alkylation reactions of 3-(phenylsulfonyl)methyl substituted cyclopentenones. Tetrahedron, 1998, 54, 9651-9666.	1.9	15
39	2,3-Bis(phenylsulfonyl)-1,3-butadiene:Â Substrate for Michael Donor/Acceptors in a Novel Synthesis of Fused Cyclopentenes. Journal of Organic Chemistry, 1996, 61, 3829-3838.	3.2	28
40	Periselectivity in the base-catalyzed intramolecular [2+2]-cycloaddition reaction of 3-phenylsulfonyl-substituted propynes. Tetrahedron Letters, 1995, 36, 4521-4524.	1.4	12
41	(Phenylsulfonyl)allenes as Substrates for Cycloaddition Reactions: Intramolecular Cyclizations onto Unactivated Alkenes. Journal of the American Chemical Society, 1995, 117, 7071-7080.	13.7	73
42	A New Cyclopentannulation Approach to Bicyclo[3.3.0]octenes Employing a Tandem Michael Addition-[3 + 2]-Anionic Cyclization Sequence. Journal of Organic Chemistry, 1994, 59, 3256-3258.	3.2	27
43	Cyclization Reactions of 2,3-Bis(phenylsulfonyl)-1,3-butadiene with Various Carbanions. A [4 + 1] Anionic Annulation Approach to Phenylsulfonyl-Substituted Cyclopentenes. Journal of Organic Chemistry, 1994, 59, 588-596.	3.2	37
44	Peri and stereoselectivity effects in the intramolecular [2+2]-cycloaddition reaction of phenylsulfonyl-substituted allenes. Journal of the American Chemical Society, 1993, 115, 3776-3777.	13.7	43