## Jun-feng Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2066363/publications.pdf Version: 2024-02-01



LUN-FENC LL

| #  | Article                                                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Biomass based hydrogel as an adsorbent for the fast removal of heavy metal ions from aqueous solutions. Journal of Materials Chemistry A, 2017, 5, 3434-3446.                                                                                                        | 10.3 | 153       |
| 2  | Effect of Calcite, Kaolinite, Gypsum, and Montmorillonite on Huadian Oil Shale Kerogen Pyrolysis.<br>Energy & Fuels, 2014, 28, 1860-1867.                                                                                                                            | 5.1  | 91        |
| 3  | Synthesis of multiblock thermoplastic elastomers based on biodegradable poly (lactic acid) and polycaprolactone. Materials Science and Engineering C, 2009, 29, 889-893.                                                                                             | 7.3  | 55        |
| 4  | Influence of pyrolysis condition and transition metal salt on the product yield and characterization via Huadian oil shale pyrolysis. Journal of Analytical and Applied Pyrolysis, 2015, 112, 230-236.                                                               | 5.5  | 53        |
| 5  | Electrospun hollow ZnO/NiO heterostructures with enhanced photocatalytic activity. RSC Advances, 2015, 5, 67610-67616.                                                                                                                                               | 3.6  | 45        |
| 6  | Preparation of CuS nanoparticles embedded in poly(vinyl alcohol) nanofibre via electrospinning.<br>Bulletin of Materials Science, 2008, 31, 189-192.                                                                                                                 | 1.7  | 41        |
| 7  | Characteristics of bio-oil produced by the pyrolysis of mixed oil shale semi-coke and spent mushroom substrate. Fuel, 2017, 200, 218-224.                                                                                                                            | 6.4  | 33        |
| 8  | Preparation and characterization of TiO <sub>2</sub> nanofibers via using polylactic acid as template.<br>Journal of Applied Polymer Science, 2013, 128, 1095-1100.                                                                                                  | 2.6  | 25        |
| 9  | Electrospun Mn2O3 nanowrinkles and Mn3O4 nanorods: Morphology and catalytic application.<br>Applied Surface Science, 2014, 313, 360-367.                                                                                                                             | 6.1  | 24        |
| 10 | Preparation and characterization of polytetrafluoroethylene-polyacrylate core–shell nanoparticles.<br>Polymers for Advanced Technologies, 2007, 18, 544-548.                                                                                                         | 3.2  | 18        |
| 11 | Synthesis and properties of a novel superabsorbent polymer composite from microwave irradiated<br>waste material cultured <i>Auricularia auricula</i> and poly (acrylic acidâ€ <i>co</i> â€acrylamide).<br>Journal of Applied Polymer Science, 2013, 130, 3674-3681. | 2.6  | 18        |
| 12 | Preparation of recycled graphite/expanded polystyrene by a facile solvent dissolution method. Journal of Materials Science, 2019, 54, 1197-1204.                                                                                                                     | 3.7  | 17        |
| 13 | Preparation and characterization of multilayer NiO nano-products via electrospinning. Applied Surface Science, 2013, 284, 453-458.                                                                                                                                   | 6.1  | 16        |
| 14 | Oneâ€step preparation of black polystyrene particles via <i>in situ</i> suspension polymerization.<br>Polymer Engineering and Science, 2011, 51, 294-301.                                                                                                            | 3.1  | 15        |
| 15 | Preliminary Study on Copyrolysis of Spent Mushroom Substrate as Biomass and Huadian Oil Shale.<br>Energy & Fuels, 2016, 30, 6342-6349.                                                                                                                               | 5.1  | 15        |
| 16 | In situ integration of ultrathin PtRuCu alloy overlayer on copper foam as an advanced freeâ^'standing<br>bifunctional cathode for rechargeable Znâ^'air batteries. Electrochimica Acta, 2018, 283, 54-62.                                                            | 5.2  | 15        |
| 17 | Electrospun carboxylic-functionalized poly(arylene ether ketone) ultrafine fibers. High Performance<br>Polymers, 2015, 27, 939-949.                                                                                                                                  | 1.8  | 11        |
| 18 | Precipitation polymerization of molecularly imprinted polymers for recognition of melamine molecule. Journal of Applied Polymer Science, 2012, 123, 962-967.                                                                                                         | 2.6  | 10        |

Jun-feng Li

| #  | Article                                                                                                                                                                                                                     | IF                   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------|
| 19 | Optimization and investigation of the governing parameters in electrospinning the homeâ€made<br>poly( <scp>l</scp> â€lactideâ€coâ€lµâ€caprolactoneâ€diOH). Journal of Applied Polymer Science, 2013, 130, 3600              | 0 <sup>-</sup> 3610. | 10        |
| 20 | Function of NaOH hydrolysis in electrospinning ZnO nanofibers via using polylactide as templates.<br>Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2014, 187, 89-95.                  | 3.5                  | 10        |
| 21 | Preparation and properties of polytetrafluoroethylene-modified polyacrylate via emulsion polymerization. Colloid and Polymer Science, 2005, 284, 218-223.                                                                   | 2.1                  | 9         |
| 22 | Electrospun TiO <sub>2</sub> Nanofibers Surface‣oaded with Ag Nanoparticles as a Sensitizer and<br>Their Enhanced Effect in Photocatalytic Applications. European Journal of Inorganic Chemistry, 2015,<br>2015, 5039-5044. | 2.0                  | 9         |
| 23 | Preparation and Characterization of Nature Flake Graphite/Polystyrene Beads with Waste Expanded<br>Polystyrene. Chemistry Letters, 2018, 47, 1067-1070.                                                                     | 1.3                  | 8         |
| 24 | Preparation of microencapsulated phase change materials based on expanded polystyrene foam wastes.<br>Micro and Nano Letters, 2018, 13, 998-1000.                                                                           | 1.3                  | 8         |
| 25 | Synthesis and properties of a superabsorbent from an ultravioletâ€irradiated waste nameko mushroom substrate and poly(acrylic acid). Journal of Applied Polymer Science, 2014, 131, .                                       | 2.6                  | 7         |
| 26 | Electrospun dendritic ZnO nanofibers and its photocatalysis application. Journal of Applied Polymer Science, 2015, 132, .                                                                                                   | 2.6                  | 7         |
| 27 | Stabilizing electrochemical Li–O <sub>2</sub> batteries with a metal-based cathode of PdNi on Ni<br>nonwoven fabric. Nanoscale, 2019, 11, 11513-11520.                                                                      | 5.6                  | 7         |
| 28 | Rapid Determination of Gold in Geological Samples Using Flow Injection Solid-Phase<br>Chemiluminescence. Analytical Sciences, 2006, 22, 841-844.                                                                            | 1.6                  | 5         |
| 29 | Process of grafting styrene onto LLDPE by swelling and suspension copolymerization. Polymer Engineering and Science, 2010, 50, 1713-1720.                                                                                   | 3.1                  | 5         |
| 30 | Preparation of ultrafine poly(sodium 4-styrenesulfonate) fibres via electrospinning. Bulletin of<br>Materials Science, 2011, 34, 531-533.                                                                                   | 1.7                  | 5         |
| 31 | Facile Route to Constructing Ternary Nanoalloy Bifunctional Oxygen Cathode for Metal-Air Batteries.<br>Chemical Research in Chinese Universities, 2020, 36, 1153-1160.                                                      | 2.6                  | 5         |
| 32 | High-effective preparation of ultrafine poly-( <scp>l</scp> -lactide-co-â^Š-caprolactone-diOH) fibers containing silver nanoparticles. High Performance Polymers, 2014, 26, 483-487.                                        | 1.8                  | 3         |
| 33 | Study on preparation of highly dispersed graphite composite expandable polystyrene foam by<br>homogeneous dissolutionâ€suspension polymerization with waste polystyrene. Polymer Engineering<br>and Science, 0, , .         | 3.1                  | 2         |