Pilar RupÃ**%**z

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2066299/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of Drying Temperature on the Stability of Polyphenols and Antioxidant Activity of Red Grape Pomace Peels. Journal of Agricultural and Food Chemistry, 1997, 45, 1390-1393.	2.4	575
2	FTIR-ATR spectroscopy as a tool for polysaccharide identification in edible brown and red seaweeds. Food Hydrocolloids, 2011, 25, 1514-1520.	5.6	529
3	Potential Antioxidant Capacity of Sulfated Polysaccharides from the Edible Marine Brown SeaweedFucus vesiculosus. Journal of Agricultural and Food Chemistry, 2002, 50, 840-845.	2.4	524
4	Dietary fibre and physicochemical properties of several edible seaweeds from the northwestern Spanish coast. Food Research International, 2010, 43, 2289-2294.	2.9	284
5	Dietary fibre composition, antioxidant capacity and physico-chemical properties of a fibre-rich product from cocoa (Theobroma cacao L.). Food Chemistry, 2007, 104, 948-954.	4.2	226
6	High hydrostatic pressure improves the functionality of dietary fibre in okara by-product from soybean. Innovative Food Science and Emerging Technologies, 2010, 11, 445-450.	2.7	152
7	Multifunctional antioxidant activity of polysaccharide fractions from the soybean byproduct okara. Carbohydrate Polymers, 2010, 82, 245-250.	5.1	145
8	Pre-treatment and extraction techniques for recovery of added value compounds from wastes throughout the agri-food chain. Green Chemistry, 2016, 18, 6160-6204.	4.6	136
9	Pineapple fruit: morphological characteristics, chemical composition and sensory analysis of red Spanish and Smooth Cayenne cultivars. Food Chemistry, 1995, 53, 75-79.	4.2	123
10	Free Radical Scavenging Capacity in the Aging of Selected Red Spanish Wines. Journal of Agricultural and Food Chemistry, 1999, 47, 1603-1606.	2.4	99
11	Pineapple Shell as a Source of Dietary Fiber with Associated Polyphenols. Journal of Agricultural and Food Chemistry, 1997, 45, 4028-4031.	2.4	98
12	Brown and red seaweeds as potential sources of antioxidant nutraceuticals. Journal of Applied Phycology, 2012, 24, 1123-1132.	1.5	93
13	Molecular weight distribution of polysaccharides from edible seaweeds by high-performance size-exclusion chromatography (HPSEC). Talanta, 2012, 93, 153-159.	2.9	93
14	Health-Promoting Effects of a Dietary Fiber Concentrate from the Soybean Byproduct Okara in Rats. Journal of Agricultural and Food Chemistry, 2008, 56, 7495-7501.	2.4	92
15	Bioactivity of sulfated polysaccharides from the edible red seaweed Mastocarpus stellatus. Bioactive Carbohydrates and Dietary Fibre, 2014, 3, 29-40.	1.5	92
16	Measurement of Health-Promoting Properties in Fruit Dietary Fibres: Antioxidant Capacity, Fermentability and Glucose Retardation Index. Journal of the Science of Food and Agriculture, 1996, 71, 515-519.	1.7	72
17	High dietary fibre powders from orange and lime peels: associated polyphenols and antioxidant capacity. Food Research International, 1996, 29, 757-762.	2.9	70
18	A simple ion chromatography method for inorganic anion analysis in edible seaweeds. Talanta, 2010, 82, 1313-1317.	2.9	61

Pilar RupÉrez

#	Article	IF	CITATIONS
19	The effects of okara on rat growth, cecal fermentation, and serum lipids. European Food Research and Technology, 2007, 225, 925-928.	1.6	59
20	Indigestible fraction of okara from soybean: composition, physicochemical properties and in vitro fermentability by pure cultures of Lactobacillus acidophilus and Bifidobacterium bifidum. European Food Research and Technology, 2009, 228, 685-693.	1.6	47
21	Effect of the red seaweed Mastocarpus stellatus intake on lipid metabolism and antioxidant status in healthy Wistar rats. Food Chemistry, 2012, 135, 806-811.	4.2	44
22	<i>In vitro</i> fermentability and prebiotic potential of soyabean Okara by human faecal microbiota. British Journal of Nutrition, 2016, 116, 1116-1124.	1.2	43
23	Okara treated with high hydrostatic pressure assisted by Ultraflo ® L: Effect on solubility of dietary fibre. Innovative Food Science and Emerging Technologies, 2016, 33, 32-37.	2.7	43
24	Health-promoting activities of ultra-filtered okara protein hydrolysates released by in vitro gastrointestinal digestion: identification of active peptide from soybean lipoxygenase. European Food Research and Technology, 2010, 230, 655-663.	1.6	42
25	Changes in chemical composition during germination ofbotrytis cinerea sclerotia. Current Microbiology, 1981, 6, 243-246.	1.0	37
26	Investigation of the heterogeneity of xyloglucans from the cell walls of apple. Carbohydrate Research, 1985, 142, 107-113.	1.1	37
27	Mango peel fibres with antioxidant activity. European Food Research and Technology, 1997, 205, 39-42.	0.6	36
28	Celery by-products as a source of mannitol. European Food Research and Technology, 2003, 216, 224-226.	1.6	36
29	Inulin extraction from common inulin-containing plant sources. Industrial Crops and Products, 2021, 170, 113726.	2.5	35
30	Indigestible fraction of edible marine seaweeds. Journal of the Science of Food and Agriculture, 2003, 83, 1267-1272.	1.7	34
31	Improved evaporative light scattering detection for carbohydrate analysis. Food Chemistry, 2015, 180, 265-271.	4.2	34
32	Oligosaccharides in raw and processed legumes. European Food Research and Technology, 1998, 206, 130-133.	0.6	31
33	Soybean whey enhance mineral balance and caecal fermentation in rats. European Journal of Nutrition, 2010, 49, 155-163.	1.8	31
34	Antioxidant and prebiotic effects of dietary fiber co-travelers from sugar Kombu in healthy rats. Journal of Applied Phycology, 2013, 25, 503-512.	1.5	28
35	Partial characterisation of galactofuranose-containing heteropolysaccharides from the cell walls of Talaromyces helicus. Carbohydrate Research, 1988, 177, 265-272.	1.1	27
36	Apple by-product dietary fibre exhibits potential prebiotic and hypolipidemic effectsin high-fat fed Wistar rats. Bioactive Carbohydrates and Dietary Fibre, 2020, 23, 100219.	1.5	23

Pilar Rupã‰rez

#	Article	IF	CITATIONS
37	High hydrostatic pressure aided by food-grade enzymes as a novel approach for Okara valorization. Innovative Food Science and Emerging Technologies, 2017, 42, 197-203.	2.7	22
38	Seasonal Changes in the Composition and Properties of a High Dietary Fibre Powder from Grapefruit Peel. Journal of the Science of Food and Agriculture, 1997, 74, 308-312.	1.7	21
39	Infrared characterisation, monosaccharide profile and antioxidant activity of chemical fractionated polysaccharides from the edible seaweed sugar Kombu (<i>Saccharina latissima</i>). International Journal of Food Science and Technology, 2015, 50, 340-346.	1.3	19
40	Soybean Okara modulates gut microbiota in rats fed a high-fat diet. Bioactive Carbohydrates and Dietary Fibre, 2018, 16, 100-107.	1.5	16
41	Mannoglucogalactans from the cell walls of Penicillium erythromellis: Isolation and partial characterisation. Carbohydrate Research, 1987, 167, 269-278.	1.1	14
42	Low molecular weight carbohydrates released from Okara by enzymatic treatment under high hydrostatic pressure. Innovative Food Science and Emerging Technologies, 2016, 38, 76-82.	2.7	14
43	Polysaccharides from the Cell Walls of Pineapple Fruit. Journal of Agricultural and Food Chemistry, 1995, 43, 608-612.	2.4	13
44	Differences in cell wall polysaccharide composition between embryogenic and non-embryogenic calli of Medicago arborea L Plant Cell, Tissue and Organ Culture, 2009, 97, 323-329.	1.2	12
45	High Hydrostatic Pressure Assisted by Celluclast® Releases Oligosaccharides from Apple By-Product. Foods, 2020, 9, 1058.	1.9	10
46	Determination of soluble dietary fibre content of Okara treated with high hydrostatic pressure and enzymes: a comparative evaluation of two methods (AOAC and HPLC-ELSD). Journal of Food Science and Technology, 2017, 54, 1333-1339.	1.4	8
47	Effects of Undaria pinnatifida, Himanthalia elongata and Porphyra umbilicalis extracts on in vitro α-glucosidase activity and glucose diffusion. Nutricion Hospitalaria, 2014, 29, 1434-46.	0.2	8
48	Novel rich-in-soluble dietary fiber apple ingredient obtained from the synergistic effect of high hydrostatic pressure aided by Celluclast®. LWT - Food Science and Technology, 2021, 146, 111421.	2.5	7
49	In vitro fermentability of globe artichoke by-product by Lactobacillus acidophilus and Bifidobacterium bifidum. Bioactive Carbohydrates and Dietary Fibre, 2021, 26, 100286.	1.5	7
50	Nonâ€digestible carbohydrates in Brazilian soybean seeds [<i>Glycine max</i> (L.) Merril]. International Journal of Food Science and Technology, 2010, 45, 2524-2530.	1.3	6
51	Indigestible fraction and starch availability in peas measured in vitro. European Food Research and Technology, 1997, 205, 43-47.	0.6	5
52	Polysaccharides from Hemileia vastatrix uredospores. Experimental Mycology, 1983, 7, 82-89.	1.8	3
53	Valorisation Approach for the Soybean By-Product Okara Using High Hydrostatic Pressure. Current Nutrition and Food Science, 2019, 15, 548-550.	0.3	3
54	Assessment of the prebiotic potential of globe artichoke by-product through in vitro fermentation by human faecal microbiota. Bioactive Carbohydrates and Dietary Fibre, 2022, 28, 100328.	1.5	3