
Ann R Holmes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2066142/publications.pdf Version: 2024-02-01

ANN PHOLMES

#	Article	IF	CITATIONS
1	Adhesion of Yeast and Bacteria to Oral Surfaces. Methods in Molecular Biology, 2017, 1537, 165-190.	0.4	4
2	Denaturing gradient gel electrophoresis profiles of bacteria from the saliva of twenty four different individuals form clusters that showed no relationship to the yeasts present. Archives of Oral Biology, 2017, 82, 6-10.	0.8	3
3	Multilocus sequence typing (MLST) analysis ofCandida albicansisolates colonizing acrylic dentures before and after denture replacement. Medical Mycology, 2016, 55, myw128.	0.3	16
4	Targeting efflux pumps to overcome antifungal drug resistance. Future Medicinal Chemistry, 2016, 8, 1485-1501.	1.1	89
5	Secretory component mediates <i>Candida albicans</i> binding to epithelial cells. Oral Diseases, 2016, 22, 69-74.	1.5	12
6	Learning the <scp>ABC</scp> of oral fungal drug resistance. Molecular Oral Microbiology, 2015, 30, 425-437.	1.3	15
7	<i>In vitro</i> expression of <i>Candida albicans</i> alcohol dehydrogenase genes involved in acetaldehyde metabolism. Molecular Oral Microbiology, 2015, 30, 27-38.	1.3	12
8	Selective Advantages of a Parasexual Cycle for the Yeast <i>Candida albicans</i> . Genetics, 2015, 200, 1117-1132.	1.2	23
9	Adherence of <i>Candida albicans</i> to silicone is promoted by the human salivary protein <scp>SPLUNC</scp> 2/ <scp>PSP</scp> / <scp>BPIFA</scp> 2. Molecular Oral Microbiology, 2014, 29, 90-98.	1.3	15
10	Detection of <i><scp>C</scp>andida albicans ADH1</i> and <i>ADH2</i> m <scp>RNA</scp> s in human archival oral biopsy samples. Journal of Oral Pathology and Medicine, 2014, 43, 704-710.	1.4	11
11	Drug Resistance Is Conferred on the Model Yeast <i>Saccharomyces cerevisiae</i> by Expression of Full-Length Melanoma-Associated Human ATP-Binding Cassette Transporter ABCB5. Molecular Pharmaceutics, 2014, 11, 3452-3462.	2.3	14
12	Use of denaturing gradient gel electrophoresis for the identification of mixed oral yeasts in human saliva. Journal of Medical Microbiology, 2013, 62, 319-330.	0.7	16
13	The Monoamine Oxidase A Inhibitor Clorgyline Is a Broad-Spectrum Inhibitor of Fungal ABC and MFS Transporter Efflux Pump Activities Which Reverses the Azole Resistance of Candida albicans and Candida glabrata Clinical Isolates. Antimicrobial Agents and Chemotherapy, 2012, 56, 1508-1515.	1.4	85
14	N-acetylglucosamine increases symptoms and fungal burden in a murine model of oral candidiasis. Medical Mycology, 2012, 50, 252-258.	0.3	11
15	Yeast Colonization of Voice Prostheses: Pilot Study Investigating Effect of a Bovine Milk Product Containing Anti— <i>Candida Albicans</i> Immunoglobulin A Antibodies on Yeast Colonization and Valve Leakage. Annals of Otology, Rhinology and Laryngology, 2012, 121, 61-66.	0.6	7
16	A d-octapeptide drug efflux pump inhibitor acts synergistically with azoles in a murine oral candidiasis infection model. FEMS Microbiology Letters, 2012, 328, 130-137.	0.7	31
17	Specific interactions between the <i>Candida albicans</i> ABC transporter Cdr1p ectodomain and a <scp>d</scp> â€octapeptide derivative inhibitor. Molecular Microbiology, 2012, 85, 747-767.	1.2	41
18	Chimeras of Candida albicans Cdr1p and Cdr2p reveal features of pleiotropic drug resistance transporter structure and function. Molecular Microbiology, 2011, 82, 416-433.	1.2	22

ANN R HOLMES

#	Article	IF	CITATIONS
19	Revisiting the association between candidal infection and carcinoma, particularly oral squamous cell carcinoma. Journal of Oral Microbiology, 2010, 2, 5780.	1.2	114
20	Adhesion of Yeast and Bacteria to Oral Surfaces. Methods in Molecular Biology, 2010, 666, 103-124.	0.4	8
21	Fungal PDR transporters: Phylogeny, topology, motifs and function. Fungal Genetics and Biology, 2010, 47, 127-142.	0.9	141
22	Abc1p Is a Multidrug Efflux Transporter That Tips the Balance in Favor of Innate Azole Resistance in <i>Candida krusei</i> . Antimicrobial Agents and Chemotherapy, 2009, 53, 354-369.	1.4	93
23	Efflux-Mediated Antifungal Drug Resistance. Clinical Microbiology Reviews, 2009, 22, 291-321.	5.7	483
24	An <i>inâ€vitro</i> device for the assessment of biofilm mediated voice prosthesis damage: how we do it. Clinical Otolaryngology, 2009, 34, 481-484.	0.6	2
25	Identification of Nile red as a fluorescent substrate of the Candida albicans ATP-binding cassette transporters Cdr1p and Cdr2p and the major facilitator superfamily transporter Mdr1p. Analytical Biochemistry, 2009, 394, 87-91.	1.1	103
26	ABC Transporter Cdr1p Contributes More than Cdr2p Does to Fluconazole Efflux in Fluconazole-Resistant <i>Candida albicans</i> Clinical Isolates. Antimicrobial Agents and Chemotherapy, 2008, 52, 3851-3862.	1.4	144
27	Production from dairy cows of semi-industrial quantities of milk-protein concentrate (MPC) containing efficacious anti-Candida albicansIgA antibodies. Journal of Dairy Research, 2007, 74, 269-275.	0.7	17
28	Direct Comparison of the Pharmacodynamics of Four Antifungal Drugs in a Mouse Model of Disseminated Candidiasis Using Microbiological Assays of Serum Drug Concentrations. Microbiology and Immunology, 2007, 51, 1053-1059.	0.7	8
29	Characterization of Three Classes of Membrane Proteins Involved in Fungal Azole Resistance by Functional Hyperexpression in Saccharomyces cerevisiae. Eukaryotic Cell, 2007, 6, 1150-1165.	3.4	173
30	Candida albicans drug resistance – another way to cope with stress. Microbiology (United Kingdom), 2007, 153, 3211-3217.	0.7	183
31	Candida albicans binds to saliva proteins selectively adsorbed to silicone. Oral Surgery Oral Medicine Oral Pathology Oral Radiology and Endodontics, 2006, 102, 488-494.	1.6	42
32	Amino Acid Residues Affecting Drug Pump Function in Candida albicans-C. albicans Drug Pump Function Medical Mycology Journal, 2006, 47, 275-281.	0.9	3
33	Heterozygosity and functional allelic variation in the Candida albicans efflux pump genes CDR1 and CDR2. Molecular Microbiology, 2006, 62, 170-186.	1.2	61
34	Overexpression of Candida albicans CDR1 , CDR2 , or MDR1 Does Not Produce Significant Changes in Echinocandin Susceptibility. Antimicrobial Agents and Chemotherapy, 2006, 50, 1148-1155.	1.4	123
35	Characterization of twoCandida albicanssurface mannoprotein adhesins that bind immobilized saliva components. Medical Mycology, 2005, 43, 209-217.	0.3	25
36	Functional analysis of fungal drug efflux transporters by heterologous expression in Saccharomyces cerevisiae. Japanese Journal of Infectious Diseases, 2005, 58, 1-7.	0.5	34

ANN R HOLMES

#	Article	IF	CITATIONS
37	Regulated overexpression of CDR1 in Candida albicans confers multidrug resistance. Journal of Antimicrobial Chemotherapy, 2004, 54, 999-1006.	1.3	61
38	Detection of Candida albicans mRNA in Archival Histopathology Samples by Reverse Transcription-PCR. Journal of Clinical Microbiology, 2004, 42, 2275-2278.	1.8	9
39	Candida glabrata ATP-binding Cassette Transporters Cdr1p and Pdh1p Expressed in aSaccharomyces cerevisiae Strain Deficient in Membrane Transporters Show Phosphorylation-dependent Pumping Properties. Journal of Biological Chemistry, 2002, 277, 46809-46821.	1.6	58
40	Antifungal drug susceptibilities of commensal Candida isolates. New Zealand Dental Journal, 2002, 98, 36-9.	0.1	0
41	The pavA gene of Streptococcus pneumoniae encodes a fibronectin-binding protein that is essential for virulence. Molecular Microbiology, 2001, 41, 1395-1408.	1.2	199
42	Functional Expression of Candida albicans Drug Efflux Pump Cdr1p in a Saccharomyces cerevisiae Strain Deficient in Membrane Transporters. Antimicrobial Agents and Chemotherapy, 2001, 45, 3366-3374.	1.4	174
43	Binding Properties of <i>Streptococcus gordonii</i> SspA and SspB (Antigen I/II Family) Polypeptides Expressed on the Cell Surface of <i>Lactococcus lactis</i> MG1363. Infection and Immunity, 1998, 66, 4633-4639.	1.0	52
44	Tandem genes encode cell-surface polypeptides SspA and SspB which mediate adhesion of the oral bacterium Streptococcus gordonii to human and bacterial receptors. Molecular Microbiology, 1996, 20, 403-413.	1.2	143
45	Cell surface polypeptide CshA mediates binding of Streptococcus gordonii to other oral bacteria and to immobilized fibronectin. Infection and Immunity, 1996, 64, 4204-4210.	1.0	101
46	Candida albicans binding to the oral bacterium Streptococcus gordonii involves multiple adhesin-receptor interactions. Infection and Immunity, 1996, 64, 4680-4685.	1.0	132
47	Interactions ofCandida albicans with bacteria and salivary molecules in oral biofilms. Journal of Industrial Microbiology, 1995, 15, 208-213.	0.9	63
48	Cell-surface polypeptides as determinants of hydrophobicity in Streptococcus gordonii and Streptococcus sanguis. Colloids and Surfaces B: Biointerfaces, 1995, 5, 135-142.	2.5	15
49	Oral Candida: Clearance, Colonization, or Candidiasis?. Journal of Dental Research, 1995, 74, 1152-1161.	2.5	289
50	Adherence of Candida albicans to a cell surface polysaccharide receptor on Streptococcus gordonii. Infection and Immunity, 1995, 63, 1827-1834.	1.0	75
51	Detection of Candida albicans and other yeasts in blood by PCR. Journal of Clinical Microbiology, 1994, 32, 228-231.	1.8	107
52	Yeast-specific DNA probes and their application for the detection of Candida albicans. Journal of Medical Microbiology, 1992, 37, 346-351.	0.7	19
53	Mechanisms of aggregation accompanying morphogenesis in <i>Candida albicans</i> . Oral Microbiology and Immunology, 1992, 7, 32-37.	2.8	17
54	Peanut sensitivity as a cause of burning mouth. Oral Surgery, Oral Medicine, and Oral Pathology, 1991, 72, 671-674.	0.6	4

ANN R HOLMES

#	Article	IF	CITATIONS
55	Effect of calcium ion uptake onCandida albicansmorphology. FEMS Microbiology Letters, 1991, 77, 187-194.	0.7	45
56	Ammonium assimilation by <i>Candida albicans</i> and other yeasts: a ¹³ N isotope study. Canadian Journal of Microbiology, 1991, 37, 226-232.	0.8	12
57	Nutritional factors determine germ tube formation inCandida albicans. Medical Mycology, 1988, 26, 127-131.	0.3	46
58	Factors Affecting the Interferon Sensitivity of Human Cytomegalovirus. Intervirology, 1978, 9, 48-55.	1.2	22
59	Multiplicity-dependent Replication of Varicella-zoster Virus in Interferon-treated Cells. Journal of General Virology, 1977, 35, 361-368.	1.3	17