
Kazuhiko Suga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2066130/publications.pdf Version: 2024-02-01

KAZUHIKO SUCA

#	Article	lF	CITATIONS
1	Permeability prediction of fibrous porous media by the lattice Boltzmann method with a fluid-structure boundary reconstruction scheme. Journal of Industrial Textiles, 2022, 51, 6902S-6923S.	2.4	3
2	Coolant Wetting Simulation on Simplified Stator Coil Model by the Phase-Field Lattice Boltzmann Method. Entropy, 2022, 24, 219.	2.2	0
3	Numerical simulation of filtration processes in the flow-induced deformation of fibrous porous media by a three-dimensional two-way fluid-structure interaction scheme. Chemical Engineering Science, 2022, , 117500.	3.8	6
4	Liquid Flow Simulation onto the Horizontal Square Rod Array. Japanese Journal of Multiphase Flow, 2022, 36, 128-135.	0.3	0
5	Turbulent channel flows over porous rib-roughed walls. Experiments in Fluids, 2022, 63, 1.	2.4	2
6	Describing characteristic parameters of turbulence over two-dimensional porous roughness. Journal of Thermal Science and Technology, 2021, 16, JTST0027-JTST0027.	1.1	4
7	Consistent evaporation formulation for the phase-field lattice Boltzmann method. Physical Review E, 2021, 103, 053307.	2.1	9
8	Wall-modeled large eddy simulation of turbulent heat transfer by the lattice Boltzmann method. Journal of Computational Physics, 2021, 433, 110186.	3.8	11
9	A coupled lattice Boltzmann and Cosserat rod model method for three-dimensional two-way fluid–structure interactions. AIP Advances, 2021, 11, 075020.	1.3	2
10	Development of an Analytical Wall Function for Bypass Transition. Fluids, 2021, 6, 328.	1.7	1
11	Mean Velocity Profiles over Streamwise-Aligned Permeable Ridges. Springer Proceedings in Physics, 2021, , 51-56.	0.2	0
12	Dissimilarity Between Heat and Momentum Transfer of Turbulent Heat Transfer over Surfaces with Hemisphere Protrusions. Springer Proceedings in Physics, 2021, , 115-121.	0.2	1
13	Characteristics of turbulent square duct flows over porous media. Journal of Fluid Mechanics, 2020, 884, .	3.4	16
14	Direct numerical simulation of turbulent heat transfer over fully resolved anisotropic porous structures. International Journal of Heat and Fluid Flow, 2020, 81, 108515.	2.4	14
15	Direct numerical simulation of turbulent conjugate heat transfer in a porous-walled duct flow. Journal of Fluid Mechanics, 2020, 904, .	3.4	9
16	Rayleigh-Bénard Convection of Paramagnetic Liquid under a Magnetic Field from Permanent Magnets. Symmetry, 2020, 12, 341.	2.2	6
17	Natural convection of paramagnetic fluid along a vertical heated wall under a magnetic field from a single permanent magnet. Journal of Magnetism and Magnetic Materials, 2020, 502, 166574.	2.3	5
18	Turbulence characteristics over k-type rib roughened porous walls. International Journal of Heat and Fluid Flow, 2020, 82, 108541.	2.4	6

#	Article	IF	CITATIONS
19	Phase-field lattice Boltzmann simulation of minute droplet onto isotropic porous media. Transactions of the JSME (in Japanese), 2020, 86, 20-00014-20-00014.	0.2	4
20	Magnetothermal force effect on natural convection through a partially-heated vertical channel. Journal of Thermal Science and Technology, 2020, 15, JTST0019-JTST0019.	1.1	1
21	Algebraic non-equilibrium wall-stress modeling for large eddy simulation based on analytical integration of the thin boundary-layer equation. Physics of Fluids, 2019, 31, 075109.	4.0	15
22	Implicit Large-Eddy Simulation of rotating and non-rotating machinery with Cumulant Lattice Boltzmann method aiming for industrial applications. , 2019, , .		6
23	Extensive investigation of the influence of wall permeability on turbulence. International Journal of Heat and Fluid Flow, 2019, 80, 108465.	2.4	17
24	An extension of the second moment closure model for turbulent flows over macro rough walls. International Journal of Heat and Fluid Flow, 2019, 77, 186-201.	2.4	8
25	Preface for Review article by Kim & Choi. International Journal of Heat and Fluid Flow, 2019, 75, 300.	2.4	0
26	Effect of magnetic field on natural convection inside a partially-heated vertical duct: Experimental study. International Journal of Heat and Mass Transfer, 2019, 132, 1231-1238.	4.8	9
27	Turbulence over porous walls with structural roughness of k- and d-types. The Proceedings of the Fluids Engineering Conference, 2019, 2019, OS8-03.	0.0	1
28	Magnetothermal force on heated or cooled pipe flow. International Journal of Heat and Fluid Flow, 2018, 69, 1-8.	2.4	5
29	Anisotropic wall permeability effects on turbulent channel flows. Journal of Fluid Mechanics, 2018, 855, 983-1016.	3.4	30
30	Combined effects of molecular geometry and nanoconfinement on liquid flows through carbon nanotubes. Physical Review E, 2018, 97, 053109.	2.1	5
31	Natural convection of air between parallel plates under strong magnetic field. International Journal of Advances in Engineering Sciences and Applied Mathematics, 2018, 10, 125-131.	1.1	0
32	Lattice Boltzmann Method for Turbulent Flows. , 2018, , 285-292.		0
33	TURBULENT TRANSPORT OVER ANISOTROPIC POROUS MEDIA. , 2018, , .		0
34	MAGNETOTHERMAL CONVECTION OF PARAMAGNETIC FLUID INSIDE OPEN-CELL POROUS MEDIA UNDER GRAVITY FIELD. , 2018, , .		0
35	SECOND MOMENT MODELLING OF CONJUGATE TURBULENT HEAT TRANSFER IN POROUS MEDIA. , 2018, , .		0
36	Spanwise turbulence structure over permeable walls. Journal of Fluid Mechanics, 2017, 822, 186-201.	3.4	32

#	Article	IF	CITATIONS
37	Effect of magnetothermal force on heat and fluid flow of paramagnetic liquid flow inside a pipe. Applied Thermal Engineering, 2017, 115, 1298-1305.	6.0	6
38	Direct numerical simulation of turbulence over anisotropic porous media. Journal of Fluid Mechanics, 2017, 831, 41-71.	3.4	71
39	Modelling turbulent and dispersion heat fluxes in turbulent porous medium flows using the resolved LES data. International Journal of Heat and Fluid Flow, 2017, 68, 225-236.	2.4	26
40	HEAT TRANSFER AND PRESSURE DROP IN MULTILOUVERED FINS. Journal of Enhanced Heat Transfer, 2017, 24, 137-144.	1.1	3
41	NATURAL CONVECTION OF PARAMAGNETIC FLUID BETWEEN PARALLEL PLATES UNDER STRONG MAGNETIC FIELD. , 2017, , .		0
42	Transport Mechanism of Interface Turbulence over Porous and Rough Walls. Flow, Turbulence and Combustion, 2016, 97, 1071-1093.	2.6	29
43	Thermal lattice Boltzmann method for complex microflows. Physical Review E, 2016, 94, 013102.	2.1	2
44	Wall-Adjacent Velocity Profiles of Nano-scale Gas Flows. Journal of Statistical Physics, 2016, 165, 907-919.	1.2	5
45	Lattice Boltzmann direct numerical simulation of interface turbulence over porous and rough walls. International Journal of Heat and Fluid Flow, 2016, 61, 145-157.	2.4	64
46	Imbalance-correction grid-refinement method for lattice Boltzmann flow simulations. Journal of Computational Physics, 2016, 311, 348-362.	3.8	37
47	Understanding and Modelling Turbulence Over and Inside Porous Media. Flow, Turbulence and Combustion, 2016, 96, 717-756.	2.6	35
48	Effect of the wall structure on nanochannel gas flow: A molecular dynamics study. Journal of Thermal Science and Technology, 2015, 10, JTST0027-JTST0027.	1.1	2
49	Confinement effects on liquid-flow characteristics in carbon nanotubes. Physical Review E, 2015, 92, 063001.	2.1	11
50	A D3Q27 multiple-relaxation-time lattice Boltzmann method for turbulent flows. Computers and Mathematics With Applications, 2015, 69, 518-529.	2.7	143
51	Development of magneto-thermal lattice Boltzmann heat and fluid flow simulation. Heat and Mass Transfer, 2015, 51, 1263-1275.	2.1	5
52	Progress in the extension of a second-moment closure for turbulent environmental flows. International Journal of Heat and Fluid Flow, 2015, 51, 268-284.	2.4	12
53	Heat transfer enhancement by external magnetic field for paramagnetic laminar pipe flow. International Journal of Heat and Mass Transfer, 2015, 90, 388-395.	4.8	18
54	Large eddy simulations of pore-scale turbulent flows in porous media by the lattice Boltzmann method. International Journal of Heat and Fluid Flow, 2015, 55, 143-157.	2.4	25

#	Article	IF	CITATIONS
55	Anomaly of the lattice Boltzmann methods in three-dimensional cylindrical flows. Journal of Computational Physics, 2015, 280, 563-569.	3.8	37
56	POROUS MEDIUM MODELING OF TURBULENT HEAT TRANSFER IN SQUARE ROD ARRAYS WITH A MULTI-SCALE SECOND MOMENT CLOSURE. Special Topics and Reviews in Porous Media, 2015, 6, 173-184.	1.1	2
57	Turbulent transport in the interface region of porous layer. , 2015, , .		0
58	Molecular dynamics simulation for flow characteristics in nanochannels and single walled carbon nanotubes. Journal of Physics: Conference Series, 2014, 530, 012048.	0.4	1
59	Measurements of serpentine channel flow characteristics for a proton exchange membrane fuel cell. International Journal of Hydrogen Energy, 2014, 39, 5942-5954.	7.1	12
60	Ghost-fluid-based boundary treatment in lattice Boltzmann method and its extension to advancing boundary. Applied Thermal Engineering, 2014, 72, 126-134.	6.0	5
61	Development and application of a multi-scale k–ε model for turbulent porous medium flows. International Journal of Heat and Fluid Flow, 2014, 49, 135-150.	2.4	26
62	An implicit gas kinetic BGK scheme for high temperature equilibrium gas flows on unstructured meshes. Computers and Fluids, 2014, 93, 100-106.	2.5	25
63	Turbulent heat transfer in a two-pass cooling channel by several wall turbulence models. International Journal of Heat and Mass Transfer, 2014, 77, 406-418.	4.8	6
64	PIV measurements of interface turbulence over hetero-porous media. Journal of Physics: Conference Series, 2014, 530, 012058.	0.4	2
65	On the Budget Terms of the Double Averaged Turbulent Stress Transport Equations in Porous Media. Procedia Engineering, 2014, 79, 3-8.	1.2	5
66	Turbulence over/inside porous surfaces and challenges to its modelling. Journal of Physics: Conference Series, 2014, 530, 012004.	0.4	7
67	Effect of Wall Structures on Nano-Channel Flows. , 2014, , .		1
68	An analytical wall-function for recirculating and impinging turbulent heat transfer. International Journal of Heat and Fluid Flow, 2013, 41, 45-54.	2.4	7
69	Turbulence Characteristics in Flows Over Solid and Porous Square Ribs Mounted on Porous Walls. Flow, Turbulence and Combustion, 2013, 91, 19-40.	2.6	19
70	Modelling turbulence around and inside porous media based on the second moment closure. International Journal of Heat and Fluid Flow, 2013, 43, 35-51.	2.4	26
71	Lattice Boltzmann methods for complex micro-flows: applicability and limitations for practical applications. Fluid Dynamics Research, 2013, 45, 034501.	1.3	45
72	A Study on the Volume Averaged Turbulence Transport Equations by Performing LES of Square Rod Array Flows. 880-02 Nihon Kikai Gakkai Ronbunshī Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2013, 79, 1752-1763.	0.2	5

ΚΑΖUHIKO SUGA

#	Article	IF	CITATIONS
73	Hybrid model of lattice Boltzmann and CLSVOF methods for immiscible two-fluid flow. Progress in Computational Fluid Dynamics, 2013, 13, 152.	0.2	2
74	Numerical study on the laminar fluid flow characteristics around a rectangular cylinder with different width to height ratios. Progress in Computational Fluid Dynamics, 2013, 13, 244.	0.2	11
75	PREFACE: ASIAN SYMPOSIUM ON COMPUTATIONAL HEAT TRANSFER AND FLUID FLOW-2011 (ASCHT-11). Computational Thermal Sciences, 2012, 4, 201-211.	0.9	0
76	Second moment modelling of turbulence in porous media. , 2012, , .		0
77	Molecular Dynamics Simulation of Slip-Transitional Flows in Nano-Channels. , 2012, , .		0
78	Magnetic Convection Inside a Polymer Solution Droplet on a Lyophobic Surface. Numerical Heat Transfer; Part A: Applications, 2011, 59, 98-113.	2.1	2
79	Turbulence characteristics and mixing performances of viscoelastic fluid flow in a serpentine microchannel. Journal of Physics: Conference Series, 2011, 318, 092020.	0.4	11
80	Quadrant analyses of separating and reattaching turbulence over rib-mounted porous walls. Journal of Physics: Conference Series, 2011, 318, 022015.	0.4	0
81	An Experimental Study on Separating and Reattaching Turbulent Flows over Permeable Walls (Effects) Tj ETQq1 of the Japan Society of Mechanical Engineers Series B B-hen, 2011, 77, 1325-1334.	1 0.784314 0.2	4 rgBT /Ove 0
82	Vortex structure of turbulence over permeable walls. International Journal of Heat and Fluid Flow, 2011, 32, 586-595.	2.4	48
83	Numerical Simulation for Heat and Fluid Flow Through Porous Media. , 2011, , .		1
84	Prediction of 3-D nano-mesh flows by a micro-flow LBM and its evaluation against MD simulations. Progress in Computational Fluid Dynamics, 2011, 11, 139.	0.2	3
85	Three-Dimensional Flow in Nano-Porous Media by Lattice Boltzmann Method(Fluids Engineering). 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2010, 76, 2032-2038.	0.2	0
86	Flow Simulations in Nano-Channel by Lattice Boltzmann Method(Fluids Engineering). 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2010, 76, 1525-1533.	0.2	0
87	Effects of wall permeability on turbulence. International Journal of Heat and Fluid Flow, 2010, 31, 974-984.	2.4	99
88	Modelling turbulent high Schmidt number mass transfer across undeformable gas–liquid interfaces. International Journal of Heat and Mass Transfer, 2010, 53, 2989-2995.	4.8	11
89	Large eddy simulation analysis of engine steady intake flows using a mixed-time-scale subgrid-scale model. International Journal of Engine Research, 2010, 11, 229-241.	2.3	21

90 Lattice Boltzmann Flow Simulation in Micro-Nano Transitional Porous Media. , 2010, , .

1

#	Article	IF	CITATIONS
91	Evaluation of a lattice Boltzmann method in a complex nanoflow. Physical Review E, 2010, 82, 016701.	2.1	46
92	9 Analytical wall-functions of turbulence for complex surface flow phenomena. Developments in Heat Transfer, 2010, , 331-380.	0.1	3
93	Lattice Boltzmann Flow Simulation in a Combined Nanochannel. Advances in Applied Mathematics and Mechanics, 2010, 2, 609-625.	1.2	5
94	S0506-2-6 Experimental study on the vortex structure of turbulence over permeable walls. The Proceedings of the JSME Annual Meeting, 2010, 2010.2, 23-24.	0.0	0
95	Computation of turbulent flows over porous/fluid interfaces. Fluid Dynamics Research, 2009, 41, 012401.	1.3	13
96	Lattice Boltzmann simulation of gas flow over micro-scale airfoils. Computers and Fluids, 2009, 38, 1675-1681.	2.5	7
97	Flow Simulations in a Sub-Micro Porous Medium by the Lattice Boltzmann and the Molecular Dynamics Methods. , 2009, , .		2
98	A boundary reconstruction scheme for lattice Boltzmann flow simulation in porous media. Progress in Computational Fluid Dynamics, 2009, 9, 201.	0.2	19
99	An Experimental Study on the Structure of Turbulence over Permeable Porous Walls(Fluids) Tj ETQq1 1 0.784314 Engineers Series B B-hen, 2009, 75, 2455-2463.	rgBT /Ov 0.2	erlock 10 Tf O
100	Three Dimensional Microscopic Flow Simulation Across the Interface of a Porous Wall and Clear Fluid by the Lattice Boltzmann Method. Open Transport Phenomena Journal, 2009, 1, 35-44.	0.5	20
101	An experimental study on turbulence over rib-mounted permeable walls. , 2009, , .		0
102	Thermal engineering in hybrid car systems. Developments in Heat Transfer, 2008, , 373-391.	0.1	0
103	Kinetic lattice Boltzmann method for microscale gas flows: Issues on boundary condition, relaxation time, and regularization. Physical Review E, 2007, 76, 036711.	2.1	71
104	LES Analysis of Engine Steady Intake Flows Using a Mixed-Time-Scale SGS Model. , 2007, , 1273.		2
105	Computation of high Prandtl number turbulent thermal fields by the analytical wall-function. International Journal of Heat and Mass Transfer, 2007, 50, 4967-4974.	4.8	17
106	An investigation of water-gas transport processes in the gas-diffusion-layer of a PEM fuel cell by a multiphase multiple-relaxation-time lattice Boltzmann model. Journal of Power Sources, 2007, 172, 542-552.	7.8	128
107	A Study Toward Improving Accuracy of Large Scale Industrial Turbulent Flow Computations. , 2007, , 99-105.		1
108	A numerical study on the breakup process of laminar liquid jets into a gas. Physics of Fluids, 2006, 18, 052101.	4.0	53

#	Article	IF	CITATIONS
109	An analytical wall-function for turbulent flows and heat transfer over rough walls. International Journal of Heat and Fluid Flow, 2006, 27, 852-866.	2.4	75
110	A Generalized Analytical Wall-Function for Turbulence (1st Report, A Flow Field Model for Smooth) Tj ETQqO 0 0 Mechanical Engineers Series B B-hen, 2005, 71, 2725-2733.	rgBT /Over 0.2	lock 10 Tf 50 1
111	A Generalized Analytical Wall-Function for Turbulence (2nd Report, A Thermal Field Model for Forced) Tj ETQq1 1 of the Japan Society of Mechanical Engineers Series B B-hen, 2005, 71, 2734-2740.	0.784314 0.2	rgBT /Overla 3
112	Simultaneous measurement of turbulent velocity field and surface wave amplitude in the initial stage of an open-channel flow by PIV. Experiments in Fluids, 2005, 39, 945-953.	2.4	13
113	Wave-turbulence interaction of a low-speed plane liquid wall-jet investigated by particle image velocimetry. Physics of Fluids, 2005, 17, 082101.	4.0	8
114	Numerical simulation of binary liquid droplet collision. Physics of Fluids, 2005, 17, 082105.	4.0	124
115	Extending an Analytical Wall-Function for Turbulent Flows Over Rough Walls. , 2005, , 157-166.		3
116	Improvement of second moment closure for turbulent obstacle flow and heat transfer. International Journal of Heat and Fluid Flow, 2004, 25, 776-784.	2.4	11
117	Modeling the Rapid Part of the Pressure-Diffusion Process in the Reynolds Stress Transport Equation. Journal of Fluids Engineering, Transactions of the ASME, 2004, 126, 634-641.	1.5	16
118	Modelling Pressure-Diffuion Process in the Reynolds Stress Transport Equation. 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2004, 70, 2386-2393.	0.2	1
119	Turbulent Heat Transfer Computations around a Square Obstacle Mounted on a Channel Wall by an Improved Second Moment Closure. 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2004, 70, 2394-2401.	0.2	0
120	Predicting turbulence and heat transfer in 3-D curved ducts by near-wall second moment closures. International Journal of Heat and Mass Transfer, 2003, 46, 161-173.	4.8	35
121	Capturing the Pinch-Off of Liquid Jets by the Level Set Method. Journal of Fluids Engineering, Transactions of the ASME, 2003, 125, 922-927.	1.5	19
122	Computation of Laminar Liquid Pinch-Off Jets by the Level Set Method. 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2003, 69, 1321-1326.	0.2	1
123	Application of a Higher Order GCDH Heat Flux Model to Three-Dimensional Turbulent U-Bend Duct Heat Transfer. Journal of Heat Transfer, 2003, 125, 200-203.	2.1	9
124	Computation of Turbulent Heat Transfer by a TCL Second Moment Closure with a Higher Order GGDH Heat Flux Model 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2002, 68, 1206-1213.	0.2	1
125	Validation of Cubic Nonlinear Eddy Viscosity Turbulence Models for Engine Steady Intake Flows 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2002, 68, 1586-1592.	0.2	1
126	Application of Cubic Eddy Viscosity Turbulence Models to 3D U-bend Duct Flows 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2002, 68, 495-503.	0.2	1

#	Article	IF	CITATIONS
127	Performance of Low-Reynolds-Number Second Moment Closures in Turbulent 3-D U-bend Duct Flows with Heat Transfer 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2002, 68, 3093-3100.	0.2	0
128	Towards the development of a Reynolds-averaged algebraic turbulent scalar-flux model. International Journal of Heat and Fluid Flow, 2001, 22, 19-29.	2.4	105
129	Application of a three-equation cubic eddy viscosity model to 3-D turbulent flows by the unstructured grid method. International Journal of Heat and Fluid Flow, 2001, 22, 259-271.	2.4	12
130	Large eddy simulation of passive scalar in complex turbulence with flow impingement and flow separation. Heat Transfer - Asian Research, 2001, 30, 402-418.	2.8	11
131	Nonlinear eddy viscosity modelling for turbulence and heat transfer near wall and shear-free boundaries. International Journal of Heat and Fluid Flow, 2000, 21, 37-48.	2.4	48
132	Large Eddy Simulation of Passive Scalar in Complex Turbulence with Flow Impingement and Flow Separation 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 1999, 65, 1395-1402.	0.2	1
133	Development of a Gradient Diffusion Type of Heat-Flux Model with an Introduction of a Quadratic Reynolds Stress Tensor 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 1998, 64, 2570-2577.	0.2	0
134	Development of a Nonlinear Three Equation Eddy Viscosity Model Coupled with Transport Effects of a Stress Flatness Parameter 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 1998, 64, 57-64.	0.2	1
135	Toward the Development of an Algebraic Turbulent Heat Flux Model with the Aid of LES Data 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 1998, 64, 2208-2215.	0.2	1
136	Near-Wall Grid Dependency of Low-Reynolds-Number Eddy Viscosity Turbulence Models 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 1998, 64, 3315-3322.	0.2	4
137	Prediction of turbulent transitional phenomena with a nonlinear eddy-viscosity model. International Journal of Heat and Fluid Flow, 1997, 18, 15-28.	2.4	127
138	Development and application of a cubic eddy-viscosity model of turbulence. International Journal of Heat and Fluid Flow, 1996, 17, 108-115.	2.4	450
139	Numerical Study on Heat Transfer and Pressure Drop in Multilouvered Fins. Journal of Enhanced Heat Transfer, 1995, 2, 231-238.	1.1	22
140	Numerical Analysis on Two-Dimensional Flow and Heat Transfer of Louvered Fins Using Overlaid Grids. The JSME International Journal, Series 2: Fluids Engineering, Heat Transfer, Power, Combustionrmophysical Properties, 1990, 33, 122-127.	0.1	6
141	Numerjcal analysis on two-dimensional flow and heat transfer of louvered fins using overlaid grids. 2nd report. Parametric study of fin parameters 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 1990, 56, 3279-3283.	0.2	1
142	An experimental study of the local heat transfer characteristics in automotive louvered fins. Experimental Thermal and Fluid Science, 1989, 2, 293-300.	2.7	40
143	Numerical analysis on two-dimensional flow and heat transfer of louvered fins using overlaid grids 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 1989, 55, 221-226.	0.2	0
144	Turbulence measurement of a partially recirculating turbulent flow with Laser-Doppler-velocimeter and its numerical study 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 1987, 53, 3639-3647.	0.2	2

#	Article	IF	CITATIONS
145	Analytical Wall-Function Strategy for the Modelling of Turbulent Heat Transfer in the Automotive CFD Applications. , 0, , .		3