Chhaya Ravi Kant

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2065888/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thin carbon film deposition using energetic ions of a dense plasma focus. Physics Letters, Section A: General, Atomic and Solid State Physics, 1997, 226, 212-216.	2.1	66
2	Investigating the structural, electrochemical, and optical properties of p-type spherical nickel oxide (NiO) nanoparticles. Journal of Physics and Chemistry of Solids, 2020, 144, 109488.	4.0	62
3	Dense plasma focus energetic ions based fullerene films on a Si(111) substrate. Physics Letters, Section A: General, Atomic and Solid State Physics, 1998, 239, 109-114.	2.1	53
4	From dengue to Zika: the wide spread of mosquito-borne arboviruses. European Journal of Clinical Microbiology and Infectious Diseases, 2019, 38, 3-14.	2.9	48
5	White-light emission from annealed ZnO:Si nanocomposite thin films. Journal of Luminescence, 2012, 132, 1744-1749.	3.1	25
6	Extremely non-equilibrium synthesis of luminescent zinc oxide nanoparticles through energetic ion condensation in a dense plasma focus device. Journal Physics D: Applied Physics, 2009, 42, 155202.	2.8	24
7	One-pot wet chemical synthesis of reduced graphene oxide-zinc oxide nanocomposites for fast and selective ammonia sensing at room temperature. Sensors and Actuators A: Physical, 2021, 331, 112965.	4.1	22
8	The effect of cesium metal clusters on the optical properties ofÂcesium iodide thin films. Applied Physics A: Materials Science and Processing, 2010, 99, 305-310.	2.3	21
9	Controlling the photoluminescence of ZnO:Si nano-composite films by heat-treatment. Materials Research Bulletin, 2010, 45, 1368-1374.	5.2	16
10	Effect of residual stress on the optical properties of CsCl thin films. Journal of Physics and Chemistry of Solids, 2010, 71, 163-169.	4.0	16
11	Metal cluster's effect on the optical properties of cesium bromide thin films. Applied Physics Letters, 2012, 100, 243106.	3.3	15
12	Size and defect related broadening of photoluminescence spectra in ZnO:Si nanocomposite films. Materials Research Bulletin, 2012, 47, 901-906.	5.2	15
13	Bismuth tri-iodide-polystyrene composite for X-rays switching applications at room temperature. Radiation Physics and Chemistry, 2021, 186, 109538.	2.8	10
14	Synergistic effect of Urea and Potassium Sulphate during hydrothermal synthesis of NiO nanospheres with reduced crystallite size and enhanced electrical conductivity. Inorganic Chemistry Communication, 2022, 141, 109563.	3.9	8
15	Characterization of ZnO:Si nanocomposite films grown by thermal evaporation. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 372, 7068-7072.	2.1	7
16	Film thickness controlled photoluminescence emission in ZnO:Si nanocomposite. Optical Materials, 2012, 35, 314-316.	3.6	7
17	Mitigating Reasons for the Poor Performance of n dS/pâ€&nS Solar Cells. Global Challenges, 2018, 2, 1800017.	3.6	7
18	Polymer-Bil3 composites for high-performance, room-temperature, direct X-ray detectors. MRS Communications, 2022, 12, 358-364.	1.8	7

Chhaya Ravi Kant

#	Article	IF	CITATIONS
19	Plasmon coupling and aging effect in CsCl–Ag thin films. Materials Research Express, 2018, 5, 096405.	1.6	6
20	Tunability of Surface Plasmon Resonance Peaks in Csl:Ag Films by Growth Conditions. Plasmonics, 2020, 15, 735-741.	3.4	6
21	SPR sensitivity of silver nanorods in CsBr-Ag nanocomposite thin films. Materials Research Express, 2016, 3, 076403.	1.6	5
22	Reduced graphene oxide-zinc oxide nano-composites for gas sensing applications. Advanced Materials Proceedings, 2021, 3, 193-198.	0.2	3
23	DATA ACQUISITION SYSTEM FOR ARC-DRIVEN HF/DF CHEMICAL LASERS. Instrumentation Science and Technology, 2012, 40, 262-274.	1.8	2
24	Performance and Control of 50 kW Arc Heater for Chemical Lasers. Journal of Advanced Physics, 2012, 1, 37-44.	0.4	0
25	Numerical modeling of arc plasma generator for chemical laser applications. Journal of Engineering Physics and Thermophysics, 2012, 85, 605-613.	0.6	0