Luigi Sangaletti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2065850/publications.pdf

Version: 2024-02-01

165 3,380 34 48 papers citations h-index g-index

166 166 166 4769

166 166 166 4769
all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Enhancing the sensitivity of chemiresistor gas sensors based on pristine carbon nanotubes to detect low-ppb ammonia concentrations in the environment. Analyst, The, 2013, 138, 7392.	3.5	105
2	Oxidation of Sn Thin Films to SnO ₂ . Micro-Raman Mapping and X-ray Diffraction Studies. Journal of Materials Research, 1998, 13, 2457-2460.	2.6	93
3	Fine structures in the X-ray photoemission spectra of MnO, FeO, CoO, and NiO single crystals. Journal of Electron Spectroscopy and Related Phenomena, 1999, 98-99, 287-302.	1.7	92
4	Synthesis and optical properties of nanosized powders: lanthanide-doped Y2O3. Applied Surface Science, 1999, 144-145, 686-689.	6.1	90
5	High sensitivity, moisture selective, ammonia gas sensors based on single-walled carbon nanotubes functionalized with indium tin oxide nanoparticles. Carbon, 2014, 80, 356-363.	10.3	86
6	Atomic Many-Body Effects for thep-Shell Photoelectron Spectra of Transition Metals. Physical Review Letters, 2000, 84, 2259-2262.	7.8	76
7	Conformational Adaptation and Electronic Structure of 2H-Tetraphenylporphyrin on Ag(111) during Fe Metalation. Journal of Physical Chemistry C, 2011, 115, 4155-4162.	3.1	76
8	TiO ₂ thin films for spintronics application: a Raman study. Journal of Raman Spectroscopy, 2010, 41, 558-565.	2.5	74
9	A novel method for the preparation of nanosized tio2 thin films. Advanced Materials, 1996, 8, 334-337.	21.0	70
10	Sub-ppm NO2 sensors based on nanosized thin films of titanium-tungsten oxides. Sensors and Actuators B: Chemical, 1996, 31, 89-92.	7.8	64
11	Supramolecular Engineering through Temperatureâ€Induced Chemical Modification of 2 <i>H</i> â€Tetraphenylporphyrin on Ag(111): Flat Phenyl Conformation and Possible Dehydrogenation Reactions. Chemistry - A European Journal, 2011, 17, 14354-14359.	3.3	58
12	Transmission function calibration of an angular resolved analyzer for X-ray photoemission spectroscopy: Theory vs experiment. Journal of Electron Spectroscopy and Related Phenomena, 2014, 195, 109-116.	1.7	55
13	Structural Studies of Tungsten–Titanium Oxide Thin Films. Journal of Solid State Chemistry, 1996, 121, 379-387.	2.9	54
14	Spectroscopic characterization of contaminants and interaction with gases in single-walled carbon nanotubes. Carbon, 2004, 42, 2099-2112.	10.3	51
15	The Cu2p X-ray photoelectron core-lines in copper oxide based high temperature superconductors. Journal of Electron Spectroscopy and Related Phenomena, 1994, 66, 223-239.	1.7	48
16	Ferromagnetism on a paramagnetic host background: the case of rutile TM:TiO2single crystals (TM =) Tj ETQq0	0 0 _{1.8} BT /0	Overlock 10 Tf 48
17	A study of the structural and mechanical properties of Ti=MoS2 coatings deposited by closed field unbalanced magnetron sputter ion plating. Surface and Coatings Technology, 1999, 116-119, 176-183.	4.8	47
18	SAM Functionalized ZnO Nanowires for Selective Acetone Detection: Optimized Surface Specific Interaction Using APTMS and GLYMO Monolayers. Advanced Functional Materials, 2020, 30, 2003217.	14.9	46

#	Article	IF	CITATIONS
19	Advanced promising routes of carbon/metal oxides hybrids in sensors: A review. Electrochimica Acta, 2018, 266, 139-150.	5.2	45
20	Synthesis and Structural Characterization of Trimetallic Perovskiteâ€Type Rareâ€Earth Orthoferrites, La _{<i>x</i>} Sm _{1–<i>x</i>} FeO ₃ . Journal of the American Ceramic Society, 2000, 83, 1087-1092.	3.8	44
21	Electronic structure and molecular orientation of a Zn-tetra-phenyl porphyrin multilayer on Si(111). Surface Science, 2006, 600, 4013-4017.	1.9	44
22	Development of a Sensing Array for Human Breath Analysis Based on SWCNT Layers Functionalized with Semiconductor Organic Molecules. Advanced Healthcare Materials, 2020, 9, e2000377.	7.6	44
23	Spectroscopic evidence of in-gap states at the SrTiO3/LaAlO3 ultrathin interfaces. Applied Physics Letters 2011 98 Band offsets and density of Ti <mml:math <="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>3.3</td><td>43</td></mml:math>	3.3	43
24	/> <mml:mrow><mml:mn>3</mml:mn><mml:mo>+</mml:mo></mml:mrow> states probed by x-ray photoemission on LaAlO <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow< td=""><td>3.2</td><td>41</td></mml:mrow<></mml:msub></mml:math>	3.2	41
25	Lycummlians 3./minlians 4./minliansub 7./minliansub 7./min	5.5	41
26	Correlation between crystallite sizes and microstrains in TiO2 nanopowders. Journal of Crystal Growth, 1999, 198-199, 516-520.	1.5	39
27	Growth and microstructural analysis of nanosized Y2O3 doped with rare-earths. Materials Chemistry and Physics, 2000, 66, 164-171.	4.0	39
28	An XPS study of yttria-stabilised zirconia single crystals. Journal of Electron Spectroscopy and Related Phenomena, 1993, 63, 1-10.	1.7	38
29	X-ray photoelectron microscopy of the C 1s core level of free-standing single-wall carbon nanotube bundles. Applied Physics Letters, 2002, 80, 2165-2167.	3.3	38
30	Optical and morphological characterization of Si nanocrystals/silica composites prepared by sol–gel processing. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2001, 79, 55-62.	3.5	37
31	Enhancement of room temperature ferromagnetism in N-doped TiO2â°'x rutile: Correlation with the local electronic properties. Applied Physics Letters, 2010, 97, 012506.	3.3	37
32	Band Alignment at Heteroepitaxial Perovskite Oxide Interfaces. Experiments, Methods, and Perspectives. Advanced Materials Interfaces, 2017, 4, 1700144.	3.7	37
33	A proper Anderson Hamiltonian treatment of the 3s photoelectron spectra of MnO, FeO, CoO and NiO. Chemical Physics Letters, 1995, 245, 463-468.	2.6	36
34	Electrical and structural properties of RGTO-In2O3 sensors for ozone detection. Sensors and Actuators B: Chemical, 1999, 57, 188-191.	7.8	36
35	Thin Films of Bismuth Vanadates with Modifiable Conduction Properties. Chemistry of Materials, 1999, 11, 255-261.	6.7	35
36	Influence of the completion of oxidation on the long-term response of RGTO SnO2 gas sensors. Sensors and Actuators B: Chemical, 2000, 66, 40-42.	7.8	34

#	Article	lF	Citations
37	An X-ray study of the trimetallic LaxSm1â^'xFeO3 orthoferrites. Journal of the European Ceramic Society, 2001, 21, 719-726.	5.7	32
38	Humidity-enhanced sub-ppm sensitivity to ammonia of covalently functionalized single-wall carbon nanotube bundle layers. Nanotechnology, 2017, 28, 255502.	2.6	32
39	Structural Disorder and Ionic Conduction: The Case of Bi2O3. Journal of Solid State Chemistry, 1996, 122, 439-443.	2.9	31
40	Electron-spectroscopy study of correlation mechanisms inCuGeO3ssingle crystals. Physical Review B, 1997, 55, 1459-1468.	3.2	31
41	On the non-local screening mechanisms in the 2p photoelectron spectra of NiO and La2NiO4. Solid State Communications, 1997, 103, 421-424.	1.9	30
42	Impact of covalent functionalization by diazonium chemistry on the electronic properties of graphene on SiC. Nanoscale, 2020, 12, 9032-9037.	5.6	29
43	Surface and Bulk Normal State Transport Properties in K3C60. Physical Review Letters, 2001, 87, 076401.	7.8	28
44	Correlation between Deposition Parameters and Hydrogen Production in CuO Nanostructured Thin Films. Langmuir, 2016, 32, 1510-1520.	3.5	28
45	Electronic structure ofBi2CuO4. Physical Review B, 1994, 50, 10435-10441.	3.2	27
46	Molecular orientations, electronic properties and charge transfer timescale in a Zn-porphyrin/C70 donor–acceptor complex for solar cells. Surface Science, 2006, 600, 4018-4023.	1.9	26
47	Direct Evidence of Chemically Inhomogeneous, Nanostructured, Si–O Buried Interfaces and Their Effect on the Efficiency of Carbon Nanotube/Si Photovoltaic Heterojunctions. Journal of Physical Chemistry C, 2013, 117, 18688-18696.	3.1	26
48	Development of low-cost ammonia gas sensors and data analysis algorithms to implement a monitoring grid of urban environmental pollutants. Journal of Environmental Monitoring, 2012, 14, 1565.	2.1	25
49	Kinetics of disorder-order transition of Tiî— $_{\mbox{\tiny J}}$ W oxide thin-film sensor. Sensors and Actuators B: Chemical, 1996, 31, 19-24.	7.8	24
50	Physical specifications of clinical proton beams from a synchrotron. Medical Physics, 1996, 23, 939-951.	3.0	24
51	Cation Sublattice and Coordination Polyhedra inABO4Type of Structures. Journal of Solid State Chemistry, 1997, 129, 82-91.	2.9	24
52	Temperature dependence of the electronic properties of K3C60 and K4C60 single-phase films investigated by means of electron spectroscopies. Journal of Chemical Physics, 2000, 113, 8266-8275.	3.0	24
53	Electronic properties of the ordered metallic Mn:Ge(111) interface. Physical Review B, 2005, 72, .	3.2	24
54	Interface formation and growth of ferromagnetic thin layers in the Mn:Ge(111) system probed by dichroic soft x-ray spectroscopies. Physical Review B, 2007, 75, .	3.2	24

#	Article	IF	CITATIONS
55	Substrate Influence for the Znâ€ŧetraphenylâ€porphyrin Adsorption Geometry and the Interfaceâ€induced Electron Transfer. ChemPhysChem, 2010, 11, 2248-2255.	2.1	24
56	X-ray-photoemission spectroscopy and optical reflectivity of yttrium-stabilized zirconia. Physical Review B, 1994, 50, 4292-4296.	3.2	23
57	Analysis of the Thermal Oxidation of Tin Droplets and Its Implications on Gas Sensor Stability. Journal of the Electrochemical Society, 1999, 146, 3527-3535.	2.9	22
58	Controlled synthesis of carbon nanostructures using aligned ZnO nanorods as templates. Carbon, 2012, 50, 5472-5480.	10.3	22
59	An ultrathin TiO2 blocking layer on Cd stannate as highly efficient front contact for dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2013, 15, 16812.	2.8	21
60	Coordination chemistry for antibacterial materials: a monolayer of a Cu2+ 2,2′-bipyridine complex grafted on a glass surface. Dalton Transactions, 2013, 42, 4552.	3.3	21
61	Steering the Efficiency of Carbon Nanotube–Silicon Photovoltaic Cells by Acid Vapor Exposure: A Real-Time Spectroscopic Tracking. ACS Applied Materials & Samp; Interfaces, 2015, 7, 9436-9444.	8.0	21
62	Enhanced selectivity of target gas molecules through a minimal array of gas sensors based on nanoparticle-decorated SWCNTs. Analyst, The, 2019, 144, 4100-4110.	3.5	21
63	Electronic-correlation effects in the x-ray-photoemission spectra of NiS2. Physical Review B, 1997, 55, 9514-9519.	3.2	20
64	Controlling the thickness of carbon nanotube random network films by the estimation of the absorption coefficient. Carbon, 2015, 95, 28-33.	10.3	20
65	Environmental Monitoring of Low-ppb Ammonia Concentrations Based on Single-wall Carbon Nanotube Chemiresistor Gas Sensors: Detection Limits, Response Dynamics, and Moisture Effects. Procedia Engineering, 2014, 87, 716-719.	1.2	19
66	Gas sensing at the nanoscale: engineering SWCNT-ITO nano-heterojunctions for the selective detection of NH3 and NO2 target molecules. Nanotechnology, 2017, 28, 035502.	2.6	19
67	Adsorption geometry, conformation, and electronic structure of 2H-octaethylporphyrin on Ag(111) and Fe metalation in ultra high vacuum. Journal of Chemical Physics, 2013, 138, 144702.	3.0	18
68	Improved recovery time and sensitivity to H2 and NH3 at room temperature with SnOx vertical nanopillars on ITO. Scientific Reports, 2018, 8, 10028.	3.3	18
69	Electron transfer fromGdions to theCcage in endohedralGd@C82probed by resonant photoemission spectroscopy. Physical Review B, 2004, 70, .	3.2	17
70	Intrinsic origin of interface states and band-offset profiling of nanostructured <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">LaAlO</mi><msub><mrow></mrow><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn><mn&< td=""><td>:;/ms12b> ;/msub></td><td>;&lt;mo>/8 ;</td></mn&<></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></mn></msub></math>	:;/m s 12b> ;/msub>	;&l t; mo>/8 ;
71	heterojunctions probed by element-specific resonan. Physical Review B, 2014, 90, . Anomalous gas sensing behaviors to reducing agents of hydrothermally grown α-Fe2O3 nanorods. Sensors and Actuators B: Chemical, 2018, 273, 1237-1245.	7.8	17
72	C70 adsorbed on Cu(111): Metallic character and molecular orientation. Journal of Chemical Physics, 2002, 116, 7685-7690.	3.0	16

#	Article	IF	CITATIONS
73	Structural disorder in CdSxSe1â^'x films probed by microdiffraction experiments. Applied Surface Science, 2002, 186, 527-532.	6.1	16
74	Polymerization effects and localized electronic states in condensed-phase eumelanin. Physical Review B, 2009, 80, .	3.2	16
75	Chemical Defectâ€Driven Response on Grapheneâ€Based Chemiresistors for Subâ€ppm Ammonia Detection. Angewandte Chemie - International Edition, 2022, 61, .	13.8	16
76	Sum rule to evaluate the exchange energy in core-level photoemission. Physical Review B, 2002, 66, .	3.2	15
77	Melting of nanostructured Sn probed by in-situ x-ray diffraction. Journal of Chemical Physics, 2003, 118, 1400-1403.	3.0	15
78	Ferromagnetism and local electronic properties of rutile <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mrow><mml:mrow>crystals. Physical Review B, 2008, 78, .</mml:mrow></mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:math>	> < mml:m	n>1 ⁵ /mml:mr
79	Layer-Resolved Cation Diffusion and Stoichiometry at the LaAlO ₃ /SrTiO ₃ Heterointerface Probed by X-ray Photoemission Experiments and Site Occupancy Modeling. ACS Applied Materials & Diterfaces, 2015, 7, 25648-25657.	8.0	15
80	Rationalization of hydrogen production by bulk g-C ₃ N ₄ : an in-depth correlation between physico-chemical parameters and solar light photocatalysis. RSC Advances, 2018, 8, 39421-39431.	3.6	15
81	Phase transition, molecular motions, and inequivalent carbon atoms inK3C60â€,(111)single-phase ordered films. Physical Review B, 1999, 59, 16071-16075.	3.2	14
82	Effects of Potassium on the Supramolecular Structure and Electronic Properties of Eumelanin Thin Films. Langmuir, 2010, 26, 19007-19013.	3.5	14
83	Growth of WO3 crystals from W–Ti–O thin films. Journal of Crystal Growth, 1999, 198-199, 1240-1244.	1.5	13
84	Hybridized C–O–Si Interface States at the Origin of Efficiency Improvement in CNT/Si Solar Cells. ACS Applied Materials & Driver (1998) Applied & Driver	8.0	13
85	W–Ti–O layers for gas-sensing applications: Structure, morphology, and electrical properties. Journal of Materials Research, 1998, 13, 1568-1575.	2.6	12
86	Interface Chemistry of Graphene/Cu Grafted By 3,4,5-Tri-Methoxyphenyl. Scientific Reports, 2020, 10, 4114.	3.3	12
87	Exploring the performance of a functionalized CNT-based sensor array for breathomics through clustering and classification algorithms: from gas sensing of selective biomarkers to discrimination of chronic obstructive pulmonary disease. RSC Advances, 2021, 11, 30270-30282.	3.6	12
88	Electronic Excitations in Synthetic Eumelanin Aggregates Probed by Soft X-ray Spectroscopies. Journal of Physical Chemistry B, 2007, 111, 5372-5376.	2.6	11
89	Labeling interacting configurations through an analysis of excitation dynamics in a resonant photoemission experiment: the case of rutile TiO ₂ . Journal of Physics Condensed Matter, 2013, 25, 075502.	1.8	11
90	Deep neural network for x-ray photoelectron spectroscopy data analysis. Machine Learning: Science and Technology, 2020, 1, 015008.	5 . 0	11

#	Article	IF	Citations
91	Electronic correlation effects in the Ni 3s and Co 3s X-ray photoelectron spectra of NiO, CoO, K2NiF4 and K2CoF4. Chemical Physics Letters, 1993, 213, 613-618.	2.6	10
92	Structural modeling in the Moî—,Biî—,O system. Journal of Solid State Chemistry, 1995, 119, 428-431.	2.9	10
93	Evidence of Translational Disorder Generated by Oriented Defects in Magneli Phases. Journal of Solid State Chemistry, 1997, 131, 215-220.	2.9	10
94	Surface and electronic properties of the Mn: $Ge(111)$ interface at the early stages of growth. Surface Science, 2006, 600, 4369-4374.	1.9	10
95	Atomic approach to core-level spectroscopy of delocalized systems: Case of ferromagnetic metallicMn5Ge3. Physical Review B, 2010, 81, .	3.2	10
96	Selective Optical Switching of Interface-Coupled Relaxation Dynamics in Carbon Nanotube–Si Heterojunctions. Journal of Physical Chemistry C, 2014, 118, 24110-24116.	3.1	10
97	A cross-functional nanostructured platform based on carbon nanotube-Si hybrid junctions: where photon harvesting meets gas sensing. Scientific Reports, 2017, 7, 44413.	3.3	10
98	Effect of disorder on the Raman scattering of CdSxSe1â^'x films deposited by laser ablation. Solid State Communications, 2000, 116, 115-119.	1.9	9
99	Behaviour of the Zhang–Rice singlet in CuGeO3, Bi2CuO4, and CuO. Journal of Electron Spectroscopy and Related Phenomena, 2000, 107, 49-62.	1.7	9
100	Magnetism and stability of the Co:TiO2(100) interface probed by X-ray photoemission and ex situ magnetometry. Surface Science, 2007, 601, 4375-4380.	1.9	9
101	Photoinduced modulation of the excitonic resonance via coupling with coherent phonons in a layered semiconductor. Physical Review Research, 2021, 3, .	3.6	9
102	Methyl ($\hat{a}\in CH3$)-terminated ZnO nanowires for selective acetone detection: a novel approach toward sensing performance enhancement <i>via</i> self-assembled monolayer. Journal of Materials Chemistry A, 2022, 10, 3178-3189.	10.3	9
103	Electronic structure of K2NiF4. Physical Review B, 1994, 50, 17854-17866.	3.2	8
104	Coexistence of interfering and noninterfering channels in resonant photoemission spectra across the Cu2pâ†'3dthreshold. Physical Review B, 2002, 65, .	3.2	8
105	Carbon nanotube bundles and thin layers probed by micro-Raman spectroscopy. European Physical Journal B, 2003, 31, 203-208.	1.5	8
106	Local order and hybridization effects for Mn ions probed by resonant soft x-ray spectroscopies: The Mn:CdTe(110) interface revisited. Physical Review B, 2010, 81, .	3.2	8
107	Stoichiometry Gradient, Cation Interdiffusion, and Band Alignment between a Nanosized TiO ₂ Blocking Layer and a Transparent Conductive Oxide in Dye-Sensitized Solar Cell Front Contacts. ACS Applied Materials & Samp; Interfaces, 2015, 7, 765-773.	8.0	8
108	Pushing Down the Limit of NH ₃ Detection of Graphene-Based Chemiresistive Sensors through Functionalization by Thermally Activated Tetrazoles Dimerization. ACS Nano, 2022, 16, 10456-10469.	14.6	8

#	Article	IF	CITATIONS
109	Giant resonant photoemission at the Mn2pâ†'3dabsorption threshold ofCd1â^'xMnxTe. Physical Review B, 2003, 67, .	3.2	7
110	Sodium doped lanthanum manganites thin films: Influence of the oxygen content on the structural parameters. European Physical Journal Special Topics, 2004, 118, 165-171.	0.2	7
111	Local coordination of Mn atoms at the Mn: $Ge(111)$ interface from photoelectron diffraction experiments. Physical Review B, 2008, 77, .	3.2	7
112	Valence electronic structure of the indene molecule: Experiment vs. GW calculations. Physica Status Solidi (B): Basic Research, 2011, 248, 960-963.	1.5	7
113	Ferromagnetism in graphene-Mn(x)Si($1\hat{a}^{\prime}$ x) heterostructures grown on 6H-SiC(0001). Journal of Applied Physics, 2012, 111, .	2.5	7
114	Band offset and gap tuning of tetragonal <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi>CuO</mml:mi><mml:heterojunctions. .<="" 2019,="" 99,="" b,="" physical="" review="" td=""><td>നൂ2â^'<!--п</td--><td>nml:mo><m< td=""></m<></td></td></mml:heterojunctions.></mml:mrow></mml:msub></mml:math>	ന ൂ 2â^' п</td <td>nml:mo><m< td=""></m<></td>	n ml: mo> <m< td=""></m<>
115	Multi-electron excitations in the optical and X-ray photoelectron spectra of NiO. Solid State Communications, 1995, 96, 161-165.	1.9	6
116	A compact source of intense 1–100 keV monochromatic X-rays from low energy protons. Nuclear Instruments & Methods in Physics Research B, 1995, 99, 281-285.	1.4	6
117	Growth process analysis of a-Silâ^'xNx:H films probed by X-ray reflectivity. Materials Chemistry and Physics, 2000, 66, 172-176.	4.0	6
118	Loss structures in the photoemission spectra of MnO: A careful analysis of peak intensities. Physical Review B, 2000, 62, R7695-R7698.	3.2	6
119	Tuning the charge state of a C60 single layer on Ag(1 0 0) by Na deposition. Surface Science, 2001, $482-485,606-611$.	1.9	6
120	Magnetic polaron percolation on a rutile lattice: A geometrical exploration in the limit of low density of magnetic impurities. Physical Review B, 2009, 80, .	3.2	6
121	Dramatic efficiency boost of single-walled carbon nanotube-silicon hybrid solar cells through exposure to ppm nitrogen dioxide in air: An ab-initio assessment of the measured device performances. Journal of Colloid and Interface Science, 2020, 566, 60-68.	9.4	6
122	Microanalytical study of Er-doped LiNbO3 crystals obtained by Er–Li ion exchange. Journal of Non-Crystalline Solids, 2001, 280, 156-163.	3.1	5
123	Spectroscopic characterization of contaminants and interaction with gases in single-walled carbon nanotubes. Carbon, 2004, 42, 2099-2099.	10.3	5
124	Electronic properties of a pure and sodium-doped C70 single layer adsorbed on Al polycrystalline surface. Journal of Chemical Physics, 2005, 122, 054704.	3.0	5
125	Tracking the amorphous to epitaxial transition in RF-sputtered cubic BFO-STO heterojunctions by means of X-ray photoelectron diffraction. Applied Physics Letters, 2016, 109, .	3.3	5
126	Resonant photoemission and correlated satellites in K2CoF4. Physical Review B, 1998, 57, 10175-10182.	3.2	4

#	Article	IF	CITATIONS
127	Metallic phases of a C70 single layer adsorbed on Cu(111) doped with sodium. Surface Science, 2003, 532-535, 892-897.	1.9	4
128	Magnetic order in TM-doped TiO2 single crystals. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 1264-1269.	0.8	4
129	Response to "Comment on â€Enhancement of room temperature ferromagnetism in N-doped TiO2â^'x rutile: Correlation with the local electronic properties' ―[Appl. Phys. Lett. 97, 186101(2010)]. Applied Physics Letters, 2010, 97, 186102.	3.3	4
130	Functional K-doping of eumelanin thin films: Density functional theory and soft x-ray spectroscopy experiments in the frame of the macrocyclic protomolecule model. Journal of Chemical Physics, 2012, 136, 204703.	3.0	4
131	Phase and Disorder Investigations in Boron Nitride Thin Films Grown by Pecvd. Materials Research Society Symposia Proceedings, 1995, 410, 247.	0.1	3
132	A new modelling approach to superconductor layered structures. Solid State Communications, 1999, 110, 387-392.	1.9	3
133	X-ray reflectivity spectra of ultrathin films and nanometric multilayers: Experiment and simulation. Journal of Materials Research, 2001, 16, 2556-2561.	2.6	3
134	Electronic properties of the Mnâ \in "CdTe(110) interface probed by resonant photoemission at the Mn 2pâ \in "3d absorption threshold. Surface Science, 2004, 566-568, 508-514.	1.9	3
135	Tracking the excitation dynamics in the Mn:Ge(111) metallic interface by resonant electron spectroscopy. Journal of Physics Condensed Matter, 2012, 24, 235502.	1.8	3
136	Cation diffusion and hybridization effects at the Mn-GaSe(0001) reacted interface: <i>Ab initio</i> calculations and soft x-ray electron spectroscopy studies. Physical Review B, 2016, 93, .	3.2	3
137	Growth of hybrid carbon nanostructures on iron-decorated ZnO nanorods. Nanotechnology, 2016, 27, 145605. Identification of <mml:math< td=""><td>2.6</td><td>3</td></mml:math<>	2.6	3
138	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:msub><mml:mi>Ni</mml:mi><mml:mathvariant="normal">C</mml:mathvariant="normal"></mml:msub></mml:mrow> electronic states in graphene-Ni(111) growth through resonant and dichroic angle-resolved photoemission at the C <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>K</mml:mi></mml:math> -edge. Physical	nn>23.2	nl:mn>3
139	Review B, 2017, 96, . Gas Sensing with Solar Cells: The Case of NH3 Detection through Nanocarbon/Silicon Hybrid Heterojunctions. Nanomaterials, 2020, 10, 2303.	4.1	3
140	High-temperature nitrogen annealing induced bonding states and photoluminescence changes in inductively coupled plasma torch synthesized silicon nanostructures. Journal of Applied Physics, 2020, 128, .	2.5	3
141	Surface and interface effects on the current–voltage characteristic curves of multiwall carbon nanotube-Si hybrid junctions selectively probed through exposure to HF vapors and ppm-NO2. Journal of Applied Physics, 2021, 129, 055306.	2.5	3
142	The Italian project for a hadrontherapy centre. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1995, 360, 297-301.	1.6	2
143	Disorder and bond hybridization in boron nitride thin films. Solid State Communications, 1996, 99, 645-649.	1.9	2
144	A photoemission study of Na-induced hole doping in Bi2Sr2-y (Na y)Ca1-x (Na x)Cu2O8+ \hat{l} ′. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1997, 19, 1159-1166.	0.4	2

#	Article	IF	Citations
145	The effect of ligand correlations on the one-electron removal valence band of NiO. Chemical Physics Letters, 1997, 273, 279-284.	2.6	2
146	Band dispersion effects on the Cu $2p3/2$ X-ray photoemission core lines in cuprates. Solid State Communications, 1999, 113, 29-34.	1.9	2
147	K3C60: a strongly correlated metal with molecular disorder. Surface Science, 2001, 482-485, 476-481.	1.9	2
148	Role of oxygen content on the magnetic properties of epitaxial anatase and rutile TiO ₂ thin films. Journal of Physics: Conference Series, 2010, 200, 072030.	0.4	2
149	Local electronic properties and magnetism of (Cd,Mn)Te quantum wells. Applied Physics Letters, 2010, 96, 142105.	3.3	2
150	Chemical Defectâ€Driven Response on Grapheneâ€Based Chemiresistors for Subâ€ppm Ammonia Detection. Angewandte Chemie, 2022, 134, .	2.0	2
151	Fast-tracking of NH3 interaction with ZnO nanorods and C/ZnO hybrid nanostructures by operando spectroscopy. Applied Surface Science, 2022, 590, 153067.	6.1	2
152	Dosimetry with micro strip gas chambers. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1995, 367, 62-65.	1.6	1
153	Microraman Spectroscopy and X-Ray Diffraction Studies of Ti-W-O Thin Films. Materials Research Society Symposia Proceedings, 1996, 441, 475.	0.1	1
154	Resonant photoemission from Cd0.82Mn0.18Te single crystals at the Mn 2p â†' 3d absorption threshold. Journal of Electron Spectroscopy and Related Phenomena, 2004, 137-140, 553-557.	1.7	1
155	Amorphous Si layers co-doped with B and Mn: Thin film growth and steering of magnetic properties. Thin Solid Films, 2015, 590, 148-155.	1.8	1
156	Room temperature trimethylamine gas sensor based on aqueous dispersed graphene. , 2015, , .		1
157	Semiconducting Carbon Nanotubes: Properties, Characterization andÂSelected Applications. Nanoscience and Technology, 2016, , 239-259.	1.5	1
158	Effects of Nearlyâ€2D Oxygen Vacancy Clustering on the Magnetic Properties of d ⁰ Systems: The Case of Anatase and Rutile TiO ₂ . Physica Status Solidi (B): Basic Research, 2018, 255, 1800058.	1.5	1
159	Electronic Correlations in the 3s Photoelectron Spectra of the Late Transition Metal Oxides. NATO ASI Series Series B: Physics, 1995, , 249-264.	0.2	1
160	Growth and Structural Studies of Thin Films in the Mo-Bi-O System. Materials Research Society Symposia Proceedings, 1995, 403, 453.	0.1	0
161	Microstructure and physical properties of BxNy(OzHk) coatings deposited by r.f. unbalanced magnetron sputtering. Surface and Coatings Technology, 1997, 97, 582-589.	4.8	0
162	Charge transfer quenching in the photoemission spectra of NiO. Solid State Communications, 1999, 112, 549-553.	1.9	0

#	Article	IF	CITATIONS
163	Zhang–Rice singlets in the photoemission spectra of CuGeO3, Bi2CuO4, and CuO. Physica B: Condensed Matter, 1999, 259-261, 1126-1127.	2.7	0
164	Magnetism and electronic properties of Mn:Ge(111) interfaces probed by core level photoemission spectroscopy. Journal of Physics: Conference Series, 2012, 391, 012088.	0.4	0
165	Doping dependence of the magnitude of fluctuating spin moments in the normal state of the pnictide superconductor Sr(Fe1â^'xCox)2As2 inferred from photoemission spectroscopy. Physical Review B, 2019, 99, .	3.2	0