Imededdine Arbi Nehdi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2065793/publications.pdf

Version: 2024-02-01

92 papers 2,447 citations

172207 29 h-index 253896 43 g-index

93 all docs 93 docs citations

93 times ranked 2744 citing authors

#	Article	IF	CITATIONS
1	Mitigation of 3-monochloropropane-1,2-diol esters and glycidyl esters in refined palm oil: A new and optimized approach. LWT - Food Science and Technology, 2021, 139, 110612.	2.5	12
2	Bifunctional nano-catalyst produced from palm kernel shell via hydrothermal-assisted carbonization for biodiesel production from waste cooking oil. Renewable and Sustainable Energy Reviews, 2021, 137, 110638.	8.2	48
3	Synthesis and characterization of bifunctional magnetic nano-catalyst from rice husk for production of biodiesel. Environmental Technology and Innovation, 2021, 21, 101296.	3.0	46
4	The detection of glycidyl ester in edible palm-based cooking oil using FTIR-chemometrics and 1H NMR analysis. Food Control, 2021, 125, 108018.	2.8	13
5	Chemical and Fatty Acid Compositions of Crude and Purified Extracts Obtained from <i>Datura innoxia </i> Seeds Extracted with Different Solvents. Journal of Oleo Science, 2021, 70, 321-332.	0.6	2
6	Microencapsulation of fish oil-in-water emulsion using thiol-modified \hat{l}^2 -lactoglobulin fibrils-chitosan complex. Journal of Food Engineering, 2020, 264, 109680.	2.7	27
7	Fe3O4-PDA-Lipase as Surface Functionalized Nano Biocatalyst for the Production of Biodiesel Using Waste Cooking Oil as Feedstock: Characterization and Process Optimization. Energies, 2020, 13, 177.	1.6	70
8	Monitoring of heat-induced carcinogenic compounds (3-monochloropropane-1,2-diol esters and) Tj ETQq0 0 0 r	gBT ₁ /Overl	ock 10 Tf 50 4
9	High Reserve in Î'-Tocopherol of Peganum harmala Seeds Oil and Antifungal Activity of Oil against Ten Plant Pathogenic Fungi. Molecules, 2020, 25, 4569.	1.7	13
10	PEG-assisted microwave hydrothermal growth of spherical mesoporous Zn-based mixed metal oxide nanocrystalline: Ester production application. Fuel, 2020, 279, 118489.	3 . 4	10
11	Fabrication of Concentrated Palm Olein-Based Diacylglycerol Oil–Soybean Oil Blend Oil-In-Water Emulsion: In-Depth Study of the Rheological Properties and Storage Stability. Foods, 2020, 9, 877.	1.9	14
12	Impact of Quercetin Encapsulation with Added Phytosterols on Bilayer Membrane and Photothermal-Alteration of Novel Mixed Soy Lecithin-Based Liposome. Nanomaterials, 2020, 10, 2432.	1.9	10
13	Improving Vesicular Integrity and Antioxidant Activity of Novel Mixed Soy Lecithin-Based Liposomes Containing Squalene and Their Stability against UV Light. Molecules, 2020, 25, 5873.	1.7	6
14	Optimization and blends study of heterogeneous acid catalyst-assisted esterification of palm oil industry by-product for biodiesel production. Royal Society Open Science, 2020, 7, 191592.	1.1	5
15	Mitigation of 3-MCPD esters and glycidyl esters during the physical refining process of palm oil by micro and macro laboratory scale refining. Food Chemistry, 2020, 328, 127147.	4.2	16
16	Response Surface Methodology Approach for Optimized Biodiesel Production from Waste Chicken Fat Oil. Catalysts, 2020, 10, 633.	1.6	20
17	Effect of extraction solvents on fatty acid composition and physicochemical properties of Tecoma stans seed oils. Journal of King Saud University - Science, 2020, 32, 2468-2473.	1.6	15
18	Supermagnetic Nano-Bifunctional Catalyst from Rice Husk: Synthesis, Characterization and Application for Conversion of Used Cooking Oil to Biodiesel. Catalysts, 2020, 10, 225.	1.6	43

#	Article	IF	Citations
19	Study the Effect of Various Sulfonation Methods on Catalytic Activity of Carbohydrate-Derived Catalysts for Ester Production. Catalysts, 2020, 10, 638.	1.6	9
20	High Vacuum Fractional Distillation (HVFD) Approach for Quality and Performance Improvement of Azadirachta indica Biodiesel. Energies, 2020, 13, 2858.	1.6	3
21	Mesoporous Acidic Catalysts Synthesis from Dual-Stage and Rising Co-Current Gasification Char: Application for FAME Production from Waste Cooking Oil. Materials, 2020, 13, 871.	1.3	2
22	Synthesis of Lipase-Immobilized CeO2 Nanorods as Heterogeneous Nano-Biocatalyst for Optimized Biodiesel Production from Eruca sativa Seed Oil. Catalysts, 2020, 10, 231.	1.6	23
23	Synthesis of nanomagnetic sulphonated impregnated Ni/Mn/Na ₂ SiO ₃ as catalyst for esterification of palm fatty acid distillate. RSC Advances, 2020, 10, 6098-6108.	1.7	17
24	Synthesis of reusable biobased nano-catalyst from waste sugarcane bagasse for biodiesel production. Environmental Technology and Innovation, 2020, 18, 100788.	3.0	37
25	The implementation of artificial neural networks for the multivariable optimization of mesoporous NiO nanocrystalline: biodiesel application. RSC Advances, 2020, 10, 13302-13315.	1.7	7
26	Optimization the Process of Chemically Modified Carbon Nanofiber Coated Monolith via Response Surface Methodology for CO2 Capture. Materials, 2020, 13, 1775.	1.3	6
27	Chemical Composition, Oxidative Stability, and Antioxidant Activity of <i>Allium ampeloprasum</i> (Wild Leek) Seed Oil. Journal of Oleo Science, 2020, 69, 413-421.	0.6	8
28	Chemical composition, oxidative stability and antiproliferative activity of Anethum graveolens (dill) seed hexane extract. Grasas Y Aceites, 2020, 71, 374.	0.3	2
29	Modeling of the nanocrystalline-sized mesoporous zinc oxide catalyst using an artificial neural network for efficient biodiesel production. Chemical Engineering Communications, 2019, 206, 33-47.	1.5	9
30	Evaluation of quality parameters for fresh, used and recycled palm olein. Journal of the Science of Food and Agriculture, 2019, 99, 6989-6997.	1.7	6
31	Oxidation and Polymerization of Triacylglycerols: In-Depth Investigations towards the Impact of Heating Profiles. Foods, 2019, 8, 475.	1.9	23
32	Characterization of Ternary Blends of Vegetable Oils with Optimal ω-6/ω-3 Fatty Acid Ratios. Journal of Oleo Science, 2019, 68, 1041-1049.	0.6	13
33	Esterification of Palm Fatty Acid Distillate for Biodiesel Production Catalyzed by Synthesized Kenaf Seed Cake-Based Sulfonated Catalyst. Catalysts, 2019, 9, 482.	1.6	24
34	Palm Biochar-Based Sulphated Zirconium (Zr-AC-HSO3) Catalyst for Methyl Ester Production from Palm Fatty Acid Distillate. Catalysts, 2019, 9, 1029.	1.6	10
35	Rapid quantification of 3-monochloropropane-1,2-diol in deep-fat frying using palm olein: Using ATR-FTIR and chemometrics. LWT - Food Science and Technology, 2019, 100, 404-408.	2.5	11
36	Effects of natural and synthetic antioxidants on changes in 3-MCPD esters and glycidyl ester in palm olein during deep-fat frying. Food Control, 2019, 96, 488-493.	2.8	46

#	Article	IF	CITATIONS
37	Hydrolysis of oils in the Wadi Hanifah River in Saudi Arabia by free and immobilized <i>Staphylococcus aureus</i> ALA1 lipase. Environmental Progress and Sustainable Energy, 2019, 38, e13000.	1.3	4
38	Microencapsulation of fish oil using thiol-modified \hat{l}^2 -lactoglobulin fibrils/chitosan complex: A study on the storage stability and in \hat{A} vitro release. Food Hydrocolloids, 2018, 80, 186-194.	5 . 6	32
39	A Comparative Study of Brachychiton populneus Seed and Seed-Fiber Oils in Tunisia. Waste and Biomass Valorization, 2018, 9, 635-643.	1.8	6
40	Yucca aloifolia Seed Oil: A New Source of Bioactive Compounds. Waste and Biomass Valorization, 2018, 9, 1087-1093.	1.8	11
41	Effects of storage and yogurt matrix on the stability of tocotrienols encapsulated in chitosan-alginate microcapsules. Food Chemistry, 2018, 241, 79-85.	4.2	36
42	Physical properties and stability evaluation of fish oil-in-water emulsions stabilized using thiol-modified β-lactoglobulin fibrils-chitosan complex. Food Research International, 2018, 105, 482-491.	2.9	36
43	Metal oxide catalysts for biodiesel production. , 2018, , 303-319.		15
44	Hexane and ethanol extracted seed oils and leaf essential compositions from two castor plant (Ricinus communis L.) varieties. Industrial Crops and Products, 2018, 122, 174-181.	2.5	32
45	New Insights on Degumming and Bleaching Process Parameters on The Formation of 3-Monochloropropane-1,2-Diol Esters and Glycidyl Esters in Refined, Bleached, Deodorized Palm Oil. Journal of Oleo Science, 2018, 67, 397-406.	0.6	28
46	Study of oxidative stability and cold flow properties of Citrillus colocynthis oil and Camelus dromedaries fat biodiesel blends. Industrial Crops and Products, 2018, 122, 133-141.	2.5	14
47	Biodiesel Production from Citrillus colocynthis Oil Using Enzymatic Based Catalytic Reaction and Characterization Studies. Protein and Peptide Letters, 2018, 25, 164-170.	0.4	6
48	Biodiesel synthesis from Brassica napus seed oil using statistical optimization approach. Journal of Renewable and Sustainable Energy, 2017, 9, 013103.	0.8	10
49	Development of a palm olein oil-in-water (o/w) emulsion stabilized by a whey protein isolate nanofibrils-alginate complex. LWT - Food Science and Technology, 2017, 82, 311-317.	2.5	18
50	Thermogravimetric analyses revealed the bioenergy potential of Eulaliopsis binata. Journal of Thermal Analysis and Calorimetry, 2017, 130, 1237-1247.	2.0	30
51	Factors Impacting the Formation of 3â€MCPD Esters and Glycidyl Esters During Deep Fat Frying of Chicken Breast Meat. JAOCS, Journal of the American Oil Chemists' Society, 2017, 94, 759-765.	0.8	27
52	Sulfonated mesoporous ZnO catalyst for methyl esters production. Journal of Cleaner Production, 2017, 144, 482-491.	4.6	36
53	Sulfonated mesoporous zinc aluminate catalyst for biodiesel production from high free fatty acid feedstock using microwave heating system. Journal of the Taiwan Institute of Chemical Engineers, 2017, 70, 219-228.	2.7	33
54	Esterification of Palm Fatty Acid Distillate Using a Sulfonated Mesoporous CuOâ€ZnO Mixed Metal Oxide Catalyst. Chemical Engineering and Technology, 2017, 40, 1931-1939.	0.9	27

#	Article	IF	CITATIONS
55	Formation and characterization of thiol-modified fibrillated whey protein isolate solution with enhanced functionalities. Journal of Food Engineering, 2017, 214, 277-286.	2.7	7
56	Effects of Environmental Stresses and in Vitro Digestion on the Release of Tocotrienols Encapsulated Within Chitosan-Alginate Microcapsules. Journal of Agricultural and Food Chemistry, 2017, 65, 10651-10657.	2.4	5
57	Kinetic analyses and pyrolytic behavior of Para grass (Urochloa mutica) for its bioenergy potential. Bioresource Technology, 2017, 224, 708-713.	4.8	262
58	Recent progress in synthesis and surface functionalization of mesoporous acidic heterogeneous catalysts for esterification of free fatty acid feedstocks: A review. Energy Conversion and Management, 2017, 141, 183-205.	4.4	76
59	Stability evaluation of lutein nanodispersions prepared via solvent displacement method: The effect of emulsifiers with different stabilizing mechanisms. Food Chemistry, 2016, 205, 155-162.	4.2	31
60	Impact of stirring speed on \hat{l}^2 -lactoglobulin fibril formation. Food Science and Biotechnology, 2016, 25, 15-21.	1.2	21
61	Emulsion formulation optimization and characterization of spray-dried \hat{I}° -carrageenan microparticles for the encapsulation of CoQ10. Food Science and Biotechnology, 2016, 25, 53-62.	1.2	10
62	Strain selection, growth productivity and biomass characterization of novel microalgae isolated from fresh and wastewaters of upper Punjab, Pakistan. Frontiers in Life Science: Frontiers of Interdisciplinary Research in the Life Sciences, 2016, 9, 190-200.	1.1	26
63	Seed oil from Harmal (Rhazya stricta Decne) grown in Riyadh (Saudi Arabia): A potential source of Î-tocopherol. Journal of Saudi Chemical Society, 2016, 20, 107-113.	2.4	11
64	Physicochemical, morphological and cellular uptake properties of lutein nanodispersions prepared by using surfactants with different stabilizing mechanisms. Food and Function, 2016, 7, 2043-2051.	2.1	19
65	Comparing the formation of lutein nanodispersion prepared by using solvent displacement method and high-pressure valve homogenization: Effects of formulation parameters. Journal of Food Engineering, 2016, 177, 65-71.	2.7	18
66	Synthesis and characterization of poppy seed oil methyl esters. Chinese Journal of Chemical Engineering, 2016, 24, 1087-1096.	1.7	10
67	Forming a lutein nanodispersion via solvent displacement method: The effects of processing parameters and emulsifiers with different stabilizing mechanisms. Food Chemistry, 2016, 194, 416-423.	4.2	34
68	Effects of homogenization process parameters on physicochemical properties of astaxanthin nanodispersions prepared using a solvent-diffusion technique. International Journal of Nanomedicine, 2015, 10, 1109.	3.3	50
69	Physico-chemical properties of <i>Tecoma stans</i> Linn. seed oil: a new crop for vegetable oil. Natural Product Research, 2015, 29, 1249-1255.	1.0	7
70	Yucca aloifolia oil methyl esters. Industrial Crops and Products, 2015, 69, 257-262.	2.5	24
71	Lipase/enzyme catalyzed biodiesel production from Prunus mahaleb: A comparative study with base catalyzed biodiesel production. Industrial Crops and Products, 2015, 76, 1049-1054.	2.5	16
72	Preparation of Astaxanthin Nanodispersions Using Gelatin-Based Stabilizer Systems. Molecules, 2014, 19, 14257-14265.	1.7	35

#	Article	IF	CITATIONS
73	Leucaena leucocephala (Lam.) de Wit seed oil: Characterization and uses. Industrial Crops and Products, 2014, 52, 582-587.	2.5	35
74	Characterization of White Mahlab (<i>Prunus mahaleb</i> L.) Seed Oil: A Rich Source of αâ€Eleostearic Acid. Journal of Food Science, 2014, 79, C795-801.	1.5	29
7 5	<i>Chamaerops humilis L</i> . var. <i>argentea</i> André Date Palm Seed Oil: A Potential Dietetic Plant Product. Journal of Food Science, 2014, 79, C534-9.	1.5	15
76	Rhazya stricta Decne seed oil as an alternative, non-conventional feedstock for biodiesel production. Energy Conversion and Management, 2014, 81, 400-406.	4.4	37
77	Production and characterization of biodiesel from Camelus dromedarius (Hachi) fat. Energy Conversion and Management, 2014, 78, 50-57.	4.4	28
78	Cupressus sempervirens var. horizentalis seed oil: Chemical composition, physicochemical characteristics, and utilizations. Industrial Crops and Products, 2013, 41, 381-385.	2.5	30
79	Influence of astaxanthin, emulsifier and organic phase concentration on physicochemical properties of astaxanthin nanodispersions. Chemistry Central Journal, 2013, 7, 127.	2.6	26
80	Bitter and sweet lupin (Lupinus albus L.) seeds and seed oils: A comparison study of their compositions and physicochemical properties. Industrial Crops and Products, 2013, 49, 573-579.	2.5	37
81	Characterization of Hachi (Camelus dromedarius) fat extracted from the hump. Food Chemistry, 2013, 139, 649-654.	4.2	14
82	Development of a Coconut- and Palm-Based Fat Blend for a Cookie Filler. JAOCS, Journal of the American Oil Chemists' Society, 2013, 90, 91-101.	0.8	2
83	Evaluation and characterisation of Citrullus colocynthis (L.) Schrad seed oil: Comparison with Helianthus annuus (sunflower) seed oil. Food Chemistry, 2013, 136, 348-353.	4.2	88
84	Protection of Astaxanthin in Astaxanthin Nanodispersions Using Additional Antioxidants. Molecules, 2013, 18, 7699-7710.	1.7	21
85	The effects of physical refining on the formation of 3-monochloropropane-1,2-diol esters in relation to palm oil minor components. Food Chemistry, 2012, 135, 799-805.	4.2	62
86	Colloidal astaxanthin: Preparation, characterisation and bioavailability evaluation. Food Chemistry, 2012, 135, 1303-1309.	4.2	89
87	Garden cress (Lepidium sativum Linn.) seed oil as a potential feedstock for biodiesel production. Bioresource Technology, 2012, 126, 193-197.	4.8	33
88	The Physicochemical Properties of Palm Oil and Its Components. , 2012, , 377-391.		17
89	Characteristics, composition and thermal stability of Acacia senegal (L.) Willd. seed oil. Industrial Crops and Products, 2012, 36, 54-58.	2.5	48
90	Effect of Organic-Phase Solvents on Physicochemical Properties and Cellular Uptake of Astaxanthin Nanodispersions. Journal of Agricultural and Food Chemistry, 2011, 59, 8733-8741.	2.4	52

#	Article	IF	CITATIONS
91	Changes in chemical composition of Phoenix canariensis Hort. Ex Chabaud palm seed oil during the ripening process. Scientia Horticulturae, 2011, 129, 724-729.	1.7	9
92	Characteristics and composition of Washingtonia filifera (Linden ex André) H. Wendl. seed and seed oil. Food Chemistry, 2011, 126, 197-202.	4.2	69