List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2065407/publications.pdf Version: 2024-02-01

		94433	114465
122	4,149	37	63
papers	citations	h-index	g-index
133	133	133	1853
all docs	docs citations	times ranked	citing authors

CDISTINA H MANDRINI

#	Article	IF	CITATIONS
1	Understanding space weather to shield society: A global road map for 2015–2025 commissioned by COSPAR and ILWS. Advances in Space Research, 2015, 55, 2745-2807.	2.6	256
2	Magnetic Field and Plasma Scaling Laws: Their Implications for Coronal Heating Models. Astrophysical Journal, 2000, 530, 999-1015.	4.5	187
3	Outflows at the Edges of Active Regions: Contribution to Solar Wind Formation?. Astrophysical Journal, 2008, 676, L147-L150.	4.5	174
4	A new model-independent method to compute magnetic helicity in magnetic clouds. Astronomy and Astrophysics, 2006, 455, 349-359.	5.1	173
5	What is the source of the magnetic helicity shed by CMEs? The long-term helicity budget of AR 7978. Astronomy and Astrophysics, 2002, 382, 650-665.	5.1	169
6	The Magnetic Helicity Budget of a cme-Prolific Active Region. Solar Physics, 2002, 208, 43-68.	2.5	143
7	Progressive Transformation of a Flux Rope to an ICME. Solar Physics, 2007, 244, 115-137.	2.5	131
8	Interplanetary flux rope ejected from an X-ray bright point. Astronomy and Astrophysics, 2005, 434, 725-740.	5.1	127
9	The Structure and Evolution of a Sigmoidal Active Region. Astrophysical Journal, 2002, 574, 1021-1038.	4.5	122
10	MAGNETIC RECONNECTION ALONG QUASI-SEPARATRIX LAYERS AS A DRIVER OF UBIQUITOUS ACTIVE REGION OUTFLOWS. Astrophysical Journal, 2009, 705, 926-935.	4.5	102
11	Using the Evolution of Coronal Dimming Regions to Probe the Global Magnetic Field Topology. Solar Physics, 2006, 238, 117-139.	2.5	97
12	How Can a Negative Magnetic Helicity Active Region Generate a Positive Helicity Magnetic Cloud?. Solar Physics, 2010, 261, 127-148.	2.5	95
13	The Counterkink Rotation of a Nonâ€Hale Active Region. Astrophysical Journal, 2000, 544, 540-549.	4.5	94
14	Twisted Flux Tube Emergence Evidenced in Longitudinal Magnetograms: Magnetic Tongues. Solar Physics, 2011, 270, 45-74.	2.5	89
15	The Magnetic Helicity Injected by Shearing Motions. Solar Physics, 2002, 207, 87-110.	2.5	82
16	Are CME-Related Dimmings Always a Simple Signature of Interplanetary Magnetic Cloud Footpoints?. Solar Physics, 2007, 244, 25-43.	2.5	79
17	Expected in Situ Velocities from a Hierarchical Model forÂExpanding Interplanetary Coronal Mass Ejections. Solar Physics, 2008, 250, 347-374.	2.5	79
18	3D magnetic reconnection at an X-ray bright point. Solar Physics, 1996, 168, 115-133.	2.5	75

#	Article	IF	CITATIONS
19	Magnetic twist and writhe of active regions. Astronomy and Astrophysics, 2003, 397, 305-318.	5.1	74
20	Linking two consecutive nonmerging magnetic clouds with their solar sources. Journal of Geophysical Research, 2009, 114, .	3.3	68
21	Homologous Flares and Magnetic Field Topology inÂActive Region NOAA 10501 on 20 November 2003. Solar Physics, 2011, 269, 83-104.	2.5	68
22	Quasiâ€5eparatrix Layers in a Reduced Magnetohydrodynamic Model of a Coronal Loop. Astrophysical Journal, 1999, 521, 889-897.	4.5	64
23	Companion Event and Precursor of the X17 Flare on 28 October 2003. Solar Physics, 2006, 238, 293-312.	2.5	63
24	Magnetic helicity analysis of an interplanetary twisted flux tube. Journal of Geophysical Research, 2003, 108, .	3.3	59
25	Magnetic Topology of Active Regions and Coronal Holes: Implications for Coronal Outflows and the Solar Wind. Solar Physics, 2012, 281, 237-262.	2.5	58
26	Interpretation of multiwavelength observations of November 5, 1980 solar flares by the magnetic topology of AR 2766. Solar Physics, 1994, 150, 221-243.	2.5	55
27	EVIDENCE OF MAGNETIC RECONNECTION FROM Hα, SOFT X-RAY AND PHOTOSPHERIC MAGNETIC FIELD OBSERVATIONS. Solar Physics, 1997, 174, 229-240.	2.5	52
28	Development of a topological model for solar flares. Solar Physics, 1992, 139, 105-123.	2.5	51
29	Topological Analysis of Emerging Bipole Clusters Producing Violent Solar Events. Solar Physics, 2014, 289, 2041-2071.	2.5	51
30	Automatic Solar Flare Detection Using Neural Network Techniques. Solar Physics, 2002, 206, 347-357.	2.5	50
31	Dynamical evolution of a magnetic cloud from the Sun to 5.4ÂAU. Astronomy and Astrophysics, 2011, 535, A52.	5.1	49
32	A topological approach to understand a multiple-loop solar flare. Solar Physics, 1995, 161, 103-121.	2.5	46
33	FILAMENT INTERACTION MODELED BY FLUX ROPE RECONNECTION. Astrophysical Journal, 2011, 728, 65.	4.5	46
34	How Does Large Flaring Activity from the Same Active Region Produce Oppositely Directed Magnetic Clouds?. Solar Physics, 2007, 244, 95-114.	2.5	45
35	The Longâ€Term Evolution of AR 7978: The Scalings of the Coronal Plasma Parameters with the Mean Photospheric Magnetic Field. Astrophysical Journal, 2003, 586, 579-591.	4.5	44
36	The role of magnetic bald patches in surges and arch filament systems. Astronomy and Astrophysics, 2002, 391, 317-329.	5.1	42

#	Article	IF	CITATIONS
37	Tracking Solar Active Region Outflow Plasma from Its Source to the Near-Earth Environment. Solar Physics, 2014, 289, 3799-3816.	2.5	38
38	The Longâ€Term Evolution of AR 7978: Testing Coronal Heating Models. Astrophysical Journal, 2003, 586, 592-605.	4.5	35
39	Blowout jets and impulsive eruptive flares in a bald-patch topology. Astronomy and Astrophysics, 2017, 598, A41.	5.1	34
40	Magnetic clouds seen at different locations in the heliosphere. Annales Geophysicae, 2008, 26, 213-229.	1.6	32
41	A Relationship Between Transition Region Brightenings, Abundances, and Magnetic Topology. Solar Physics, 2001, 203, 255-287.	2.5	31
42	Ring current decay rates of magnetic storms: A statistical study from 1957 to 1998. Journal of Geophysical Research, 2002, 107, SMP 5-1.	3.3	31
43	Magnetic Helicity Budget of Solar-Active Regions from the Photosphere to Magnetic Clouds. Astrophysics and Space Science, 2004, 290, 319-344.	1.4	30
44	CAN WE EXTRAPOLATE A MAGNETIC FIELD WHEN ITS TOPOLOGY IS COMPLEX?. Solar Physics, 1997, 174, 73-89.	2.5	29
45	The Recovery of CME-Related Dimmings andÂtheÂICME's Enduring Magnetic Connection toÂtheÂSun. Solar Physics, 2008, 252, 349-372.	2.5	29
46	Flows in the solar atmosphere due to the eruptions on the 15th July, 2002. Astronomy and Astrophysics, 2005, 438, 1099-1106.	5.1	28
47	The Temporal Evolution of Coronal Loops Observed byGOESSXI. Astrophysical Journal, 2007, 657, 1127-1136.	4.5	27
48	PARALLEL EVOLUTION OF QUASI-SEPARATRIX LAYERS AND ACTIVE REGION UPFLOWS. Astrophysical Journal, 2015, 809, 73.	4.5	27
49	Why are CMEs large-scale coronal events: nature or nurture?. Annales Geophysicae, 2008, 26, 3077-3088.	1.6	26
50	A Multiple Flare Scenario where the Classic Long-Duration Flare Was Not the Source of a CME. Solar Physics, 2007, 240, 283-299.	2.5	24
51	A slow coronal mass ejection with rising X-ray source. Astronomy and Astrophysics, 2005, 434, 761-771.	5.1	23
52	How Can Active Region Plasma Escape into the Solar Wind from Below a Closed Helmet Streamer?. Solar Physics, 2014, 289, 4151-4171.	2.5	23
53	Evidence of Twisted Flux-Tube Emergence in Active Regions. Solar Physics, 2015, 290, 727-751.	2.5	22
54	Origin of the Submillimeter Radio Emission During the Time-Extended Phase of a Solar Flare. Solar Physics, 2011, 273, 339-361.	2.5	21

#	Article	IF	CITATIONS
55	The 3D Geometry of Active Region Upflows Deduced from Their Limb-to-Limb Evolution. Solar Physics, 2013, 283, 341-367.	2.5	21
56	Large-scale brightenings associated with flares. Solar Physics, 1992, 141, 147-164.	2.5	20
57	A solar burst with a spectral component observed only above 100ÂGHz during an M class flare. Astronomy and Astrophysics, 2008, 492, 215-222.	5.1	18
58	The active region source of a type III radio storm observed by Parker Solar Probe during encounter 2. Astronomy and Astrophysics, 2021, 650, A7.	5.1	17
59	Decametric N Burst: A Consequence of the Interaction of Two Coronal Mass Ejections. Solar Physics, 2007, 240, 301-313.	2.5	15
60	Properties of Magnetic Tongues over a Solar Cycle. Solar Physics, 2016, 291, 1625-1646.	2.5	15
61	The Global Context of Solar Activity During the Whole Heliosphere Interval Campaign. Solar Physics, 2011, 274, 57-86.	2.5	14
62	Moreton and EUV Waves Associated with an X1.0 Flare and CME Ejection. Solar Physics, 2016, 291, 3217-3249.	2.5	14
63	Apparent and Intrinsic Evolution of Active Region Upflows. Solar Physics, 2017, 292, 46.	2.5	14
64	Determining the Solar Source of a Magnetic Cloud Using a Velocity Difference Technique. Solar Physics, 2011, 268, 213-230.	2.5	13
65	Active-Region Twist Derived from Magnetic Tongues and Linear Force-Free Extrapolations. Solar Physics, 2015, 290, 3279-3294.	2.5	11
66	Coronal Transient Events During Two Solar Minima: Their Solar Source Regions and Interplanetary Counterparts. Solar Physics, 2011, 274, 233-249.	2.5	10
67	What causes solar active region loops to exist at transition region temperatures?. Solar Physics, 2004, 223, 57-76.	2.5	9
68	The smallest source region of an interplanetary magnetic cloud: A mini-sigmoid. Advances in Space Research, 2005, 36, 1579-1586.	2.6	9
69	Spatial Characterization of a Flare Using RadioÂObservations and Magnetic Field Topology. Solar Physics, 2007, 240, 271-281.	2.5	9
70	A Burst with Double Radio Spectrum Observed up to 212 GHz. Solar Physics, 2013, 284, 541-558.	2.5	9
71	A study of the long term evolution in active region upflows. Publication of the Astronomical Society of Japan, 2017, 69, .	2.5	9
72	A solar flare driven by thermal conduction observed in mid-infrared. Astronomy and Astrophysics, 2022, 657, A51.	5.1	9

#	Article	IF	CITATIONS
73	The Magnetic Environment of a Stealth Coronal Mass Ejection. Astrophysical Journal, 2021, 908, 89.	4.5	8
74	The Formation and Lifetime of Outflows in a Solar Active Region. Astrophysical Journal, 2021, 917, 25.	4.5	8
75	Study of bi-orthogonal modes in magnetic butterflies. Solar Physics, 2004, 219, 367-378.	2.5	7
76	Study of magnetic flux emergence and related activity in active region NOAA 10314. Advances in Space Research, 2013, 51, 1834-1841.	2.6	7
77	Very intense geomagnetic storms and their relation to interplanetary and solar active phenomena. Advances in Space Research, 2013, 51, 1842-1856.	2.6	7
78	Coronal Mass Ejections from the Same Active Region Cluster: Two Different Perspectives. Solar Physics, 2015, 290, 1671-1686.	2.5	7
79	Physical Processes Involved in the EUV "Surge―Event of 9 May 2012. Solar Physics, 2018, 293, 1.	2.5	7
80	Multi-resolution wavelet analysis of high time resolution millimeter wavelength observations of solar bursts. Astronomy and Astrophysics, 2001, 366, 317-325.	5.1	7
81	The relationship between magnetic field strength and loop lengths in solar coronal active regions. Astronomy and Astrophysics, 2006, 450, 375-381.	5.1	6
82	Editorial: Earth-affecting Solar Transients. Solar Physics, 2018, 293, 1.	2.5	6
83	COMMISSION 10: SOLAR ACTIVITY. Proceedings of the International Astronomical Union, 2008, 4, 79-103.	0.0	5
84	The Submillimeter Active Region Excess Brightness Temperature during Solar Cycles 23 and 24. Astrophysical Journal, 2020, 902, 136.	4.5	5
85	Analysis of the Evolution of a Multi-Ribbon Flare and Failed Filament Eruption. Solar Physics, 2022, 297, .	2.5	5
86	The Magnetic Helicity of an Interplanetary Hot Flux Rope. AIP Conference Proceedings, 2003, , .	0.4	4
87	New Eyes Looking at Solar Activity: Challenges for Theory and Simulations – Placing It into Context. Solar Physics, 2015, 290, 1-5.	2.5	4
88	X-type interactions of the loops in the flare of 25 September 1997 -Part II. Astronomy and Astrophysics, 2001, 372, 1030-1037.	5.1	4
89	Active-region Tilt Angles from White-light Images and Magnetograms: The Role of Magnetic Tongues. Astrophysical Journal, 2020, 894, 131.	4.5	4
90	COMMISSION 10: SOLAR ACTIVITY. Proceedings of the International Astronomical Union, 2011, 7, 69-80.	0.0	3

#	Article	IF	CITATIONS
91	Observations and Modelling of the Inner Heliosphere: Preface and Tribute to the Late Dr. Andy Breen. Solar Physics, 2013, 285, 1-7.	2.5	3
92	Correcting the effect of magnetic tongues on the tilt angle of bipolar active regions. Astronomy and Astrophysics, 2020, 633, A151.	5.1	3
93	The link between CME-associated dimmings and interplanetary magnetic clouds. Proceedings of the International Astronomical Union, 2008, 4, 265-270.	0.0	2
94	Magnetic energy release: flares and coronal mass ejections. Proceedings of the International Astronomical Union, 2009, 5, 257-266.	0.0	2
95	Analysis of a long-duration AR throughout five solar rotations: Magnetic properties and ejective events. Advances in Space Research, 2020, 65, 1641-1653.	2.6	2
96	Stereoscopic measurements of coronal Doppler velocities. Astronomy and Astrophysics, 0, , .	5.1	2
97	Searching for a Solar Source of Magnetic-Field Switchbacks in Parker Solar Probe's First Encounter. Solar Physics, 2022, 297, .	2.5	2
98	On the visual binary Carinae. Monthly Notices of the Royal Astronomical Society, 1986, 223, 79-85.	4.4	1
99	Observational support of reconnection in solar flares. Space Science Reviews, 1994, 68, 129-130.	8.1	1
100	Solar Coronal Loops and Coronal Heating Models. AIP Conference Proceedings, 2005, , .	0.4	1
101	Recurrent filament eruptions and associated CMEs. Proceedings of the International Astronomical Union, 2013, 8, 489-490.	0.0	1
102	Three-Dimensional Reconstruction and Thermal Modeling of Observed Loops. Solar Physics, 2020, 295, 1.	2.5	1
103	An Observational Test for Coronal Heating Models. Symposium - International Astronomical Union, 2004, 219, 473-477.	0.1	0
104	Use of RHESSI observations to determine the origin and fate of non-thermal flare electrons. Advances in Space Research, 2004, 34, 451-455.	2.6	0
105	7th Latin-American Conference on Space Geophysics, Atibaia, SP, Brazil, March 29–April 2, 2004. Journal of Atmospheric and Solar-Terrestrial Physics, 2005, 67, 1641.	1.6	0
106	Twist and writhe of δ-island active regions. Proceedings of the International Astronomical Union, 2010, 6, 153-156.	0.0	0
107	Solar activity due to magnetic complexity of active regions. Proceedings of the International Astronomical Union, 2010, 6, 164-168.	0.0	0
108	SOHOâ^•ACE observations of two consecutive CMEs from the same source region. , 2010, , .		0

108 SOHOâ[•]ACE observations of two consecutive CMEs from the same source region. , 2010, , .

7

#	Article	IF	CITATIONS
109	Coronal transients during two solar minima: their source regions and interplanetary counterparts. Proceedings of the International Astronomical Union, 2011, 7, 149-153.	0.0	0
110	A long-duration active region: Evolution and quadrature observations of ejective events. Proceedings of the International Astronomical Union, 2016, 12, 60-66.	0.0	0
111	An Eruptive Complex Solar Flare and Events in its Aftermath. Proceedings of the International Astronomical Union, 2016, 12, 109-112.	0.0	Ο
112	Editorial: 50 Years of Solar Physics. Solar Physics, 2016, 291, 3461-3465.	2.5	0
113	Editorial Appreciation. Solar Physics, 2017, 292, 1.	2.5	Ο
114	Editorial: Last Print Issue of Solar Physics. Solar Physics, 2017, 292, 1.	2.5	0
115	Editorial Appreciation. Solar Physics, 2018, 293, 1.	2.5	Ο
116	Editorial Appreciation. Solar Physics, 2019, 294, 1.	2.5	0
117	Editorial Appreciation. Solar Physics, 2020, 295, 1.	2.5	Ο
118	Editorial Appreciation. Solar Physics, 2021, 296, 1.	2.5	0
119	Origin of the Submillimeter Radio Emission During the Time-Extended Phase of a Solar Flare. , 2011, , 33-55.		Ο
120	Editorial: Earth-affecting Solar Transients. , 2018, , 1-6.		0
121	Editorial: Towards Future Research on Space Weather Drivers. Solar Physics, 2021, 296, 1.	2.5	Ο
122	Editorial Appreciation. Solar Physics, 2022, 297, 1.	2.5	0