Meng Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2065204/publications.pdf

Version: 2024-02-01

1125743 933447 14 361 10 13 citations h-index g-index papers 16 16 16 636 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	The structure and global distribution of the endoplasmic reticulum network are actively regulated by lysosomes. Science Advances, 2020, 6, .	10.3	58
2	Fluorescence Self-Quenching from Reporter Dyes Informs on the Structural Properties of Amyloid Clusters Formed in Vitro and in Cells. Nano Letters, 2017, 17, 143-149.	9.1	55
3	Intrinsically aggregation-prone proteins form amyloid-like aggregates and contribute to tissue aging in Caenorhabditis elegans. ELife, 2019, 8, .	6.0	51
4	ML-SIM: universal reconstruction of structured illumination microscopy images using transfer learning. Biomedical Optics Express, 2021, 12, 2720.	2.9	42
5	Structural progression of amyloid \hat{l}^2 Arctic mutant aggregation in cells revealed by multiparametric imaging. Journal of Biological Chemistry, 2019, 294, 1478-1487.	3.4	31
6	Live-cell super-resolution microscopy reveals a primary role for diffusion in polyglutamine-driven aggresome assembly. Journal of Biological Chemistry, 2019, 294, 257-268.	3.4	27
7	Intramitochondrial proteostasis is directly coupled to $\hat{l}\pm$ -synuclein and amyloid \hat{l}^2 1-42 pathologies. Journal of Biological Chemistry, 2020, 295, 10138-10152.	3.4	22
8	Long Term Aggresome Accumulation Leads to DNA Damage, p53-dependent Cell Cycle Arrest, and Steric Interference in Mitosis. Journal of Biological Chemistry, 2015, 290, 27986-28000.	3.4	21
9	Sea Cucumber-Derived Peptides Alleviate Oxidative Stress in Neuroblastoma Cells and Improve Survival in C. elegans Exposed to Neurotoxic Paraquat. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-14.	4.0	17
10	Advanced fluorescence imaging of in situ protein aggregation. Physical Biology, 2020, 17, 021001.	1.8	16
11	Expressionâ€level dependent perturbation of cell proteostasis and nuclear morphology by aggregationâ€prone polyglutamine proteins. Biotechnology and Bioengineering, 2015, 112, 1883-1892.	3.3	10
12	Advances in the study of organelle interactions and their role in neurodegenerative diseases enabled by super-resolution microscopy. Neurobiology of Disease, 2021, 159, 105475.	4.4	5
13	Fast Purification of Recombinant Monomeric Amyloid- \hat{l}^2 from <i>E. coli</i> and Amyloid- \hat{l}^2 -mCherry Aggregates from Mammalian Cells. ACS Chemical Neuroscience, 2020, 11, 3204-3213.	3. 5	4
14	Isolation and Imaging of His- and RFP-tagged Amyloid-like Proteins from Caenorhabditis elegans by TEM and SIM. Bio-protocol, 2019, 9, e3408.	0.4	0