## Mariaelvina Sala

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2065062/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Rescuing epileptic and behavioral alterations in a Dravet syndrome mouse model by inhibiting eukaryotic elongation factor 2 kinase (eEF2K). Molecular Autism, 2022, 13, 1.                                                                                           | 2.6 | 10        |
| 2  | Increased Response to 3,4-Methylenedioxymethamphetamine (MDMA) Reward and Altered Gene<br>Expression in Zebrafish During Short- and Long-Term Nicotine Withdrawal. Molecular Neurobiology,<br>2021, 58, 1650-1663.                                                   | 1.9 | 5         |
| 3  | Altered mRNA Levels of Stress-Related Peptides in Mouse Hippocampus and Caudate-Putamen in<br>Withdrawal after Long-Term Intermittent Exposure to Tobacco Smoke or Electronic Cigarette Vapour.<br>International Journal of Molecular Sciences, 2021, 22, 599.       | 1.8 | 9         |
| 4  | Developmental impaired Akt signaling in the Shank1 and Shank3 double knock-out mice. Molecular<br>Psychiatry, 2021, 26, 1928-1944.                                                                                                                                   | 4.1 | 26        |
| 5  | The DNA repair protein ATM as a target in autism spectrum disorder. JCI Insight, 2021, 6, .                                                                                                                                                                          | 2.3 | 13        |
| 6  | Arhgap22 Disruption Leads to RAC1 Hyperactivity Affecting Hippocampal Glutamatergic Synapses and Cognition in Mice. Molecular Neurobiology, 2021, 58, 6092-6110.                                                                                                     | 1.9 | 4         |
| 7  | Conservation of mechanisms regulating emotional-like responses on spontaneous nicotine<br>withdrawal in zebrafish and mammals. Progress in Neuro-Psychopharmacology and Biological<br>Psychiatry, 2021, 111, 110334.                                                 | 2.5 | 8         |
| 8  | Ultrastructural Evidence for a Role of Astrocytes and Glycogen-Derived Lactate in<br>Learning-Dependent Synaptic Stabilization. Cerebral Cortex, 2020, 30, 2114-2127.                                                                                                | 1.6 | 44        |
| 9  | LSD1 is an environmental stress-sensitive negative modulator of the glutamatergic synapse.<br>Neurobiology of Stress, 2020, 13, 100280.                                                                                                                              | 1.9 | 10        |
| 10 | Acute DOB and PMA Administration Impairs Motor and Sensorimotor Responses in Mice and Causes<br>Hallucinogenic Effects in Adult Zebrafish. Brain Sciences, 2020, 10, 586.                                                                                            | 1.1 | 6         |
| 11 | Persistent cognitive and affective alterations at late withdrawal stages after long-term intermittent exposure to tobacco smoke or electronic cigarette vapour: Behavioural changes and their neurochemical correlates. Pharmacological Research, 2020, 158, 104941. | 3.1 | 12        |
| 12 | Behavioural and pharmacological profiles of zebrafish administrated pyrrolidinyl benzodioxanes and prolinol aryl ethers with high affinity for heteromeric nicotinic acetylcholine receptors.<br>Psychopharmacology, 2020, 237, 2317-2326.                           | 1.5 | 11        |
| 13 | Impaired approach to novelty and striatal alterations in the oxytocin receptor deficient mouse model of autism. Hormones and Behavior, 2019, 114, 104543.                                                                                                            | 1.0 | 12        |
| 14 | Linking NMDA Receptor Synaptic Retention to Synaptic Plasticity and Cognition. IScience, 2019, 19, 927-939.                                                                                                                                                          | 1.9 | 31        |
| 15 | Different attentional dysfunctions in <i>eEF2K</i> <sup><i>â^'/â^'</i></sup> <i>,<br/>IL1RAPL1</i> <sup><i>â^'/â^'</i></sup> and <i>SHANK3Δ11</i> <sup><i>â^'/â^'</i></sup> mice. Genes, Brain and<br>Behavior, 2019, 18, e12563.                                    | 1.1 | 7         |
| 16 | Increased sensitivity to Δ9-THC-induced rewarding effects after seven-week exposure to electronic and tobacco cigarettes in mice. European Neuropsychopharmacology, 2019, 29, 566-576.                                                                               | 0.3 | 14        |
| 17 | In vivo and in vitro ADMET profiling and in vivo pharmacodynamic investigations of a selective α7<br>nicotinic acetylcholine receptor agonist with a spirocyclic Δ 2 -isoxazoline molecular skeleton.<br>European Journal of Pharmacology, 2018, 820, 265-273.       | 1.7 | 12        |
| 18 | Visual Object Recognition Task. Handbook of Behavioral Neuroscience, 2018, 27, 139-150.                                                                                                                                                                              | 0.7 | 0         |

| #  | Article                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | eEF2K/eEF2 Pathway Controls the Excitation/Inhibition Balance and Susceptibility to Epileptic Seizures.<br>Cerebral Cortex, 2017, 27, bhw075.                                                                                                                 | 1.6 | 57        |
| 20 | Pharmacological enhancement of mGlu5 receptors rescues behavioral deficits in SHANK3 knock-out mice. Molecular Psychiatry, 2017, 22, 689-702.                                                                                                                 | 4.1 | 134       |
| 21 | Fingolimod Limits Acute Aβ Neurotoxicity and Promotes Synaptic Versus Extrasynaptic NMDA Receptor<br>Functionality in Hippocampal Neurons. Scientific Reports, 2017, 7, 41734.                                                                                | 1.6 | 27        |
| 22 | Epilepsy and intellectual disability linked protein Shrm4 interaction with GABABRs shapes inhibitory neurotransmission. Nature Communications, 2017, 8, 14536.                                                                                                | 5.8 | 31        |
| 23 | Homer1b/c clustering is impaired in Phelan-McDermid Syndrome iPSCs derived neurons. Molecular<br>Psychiatry, 2017, 22, 637-637.                                                                                                                               | 4.1 | 4         |
| 24 | The X-Linked Intellectual Disability Protein IL1RAPL1 Regulates Dendrite Complexity. Journal of Neuroscience, 2017, 37, 6606-6627.                                                                                                                            | 1.7 | 36        |
| 25 | Pharmacological Modulation of AMPAR Rescues Intellectual Disability-Like Phenotype in Tm4sf2â <sup>~,</sup> /y<br>Mice. Cerebral Cortex, 2017, 27, 5369-5384.                                                                                                 | 1.6 | 33        |
| 26 | The Non-Peptide Arginine-Vasopressin v1a Selective Receptor Antagonist, SR49059, Blocks the<br>Rewarding, Prosocial, and Anxiolytic Effects of 3,4-Methylenedioxymethamphetamine and Its<br>Derivatives in Zebra Fish. Frontiers in Psychiatry, 2017, 8, 146. | 1.3 | 5         |
| 27 | Myosin IXa Binds AMPAR and Regulates Synaptic Structure, LTP, and Cognitive Function. Frontiers in<br>Molecular Neuroscience, 2016, 9, 1.                                                                                                                     | 1.4 | 61        |
| 28 | Zebrafish: An Animal Model to Study Nicotinic Drugs on Spatial Memory and Visual Attention.<br>Neuromethods, 2016, , 33-50.                                                                                                                                   | 0.2 | 0         |
| 29 | Ritanserin-sensitive receptors modulate the prosocial and the anxiolytic effect of MDMA derivatives,<br>DOB and PMA, in zebrafish. Behavioural Brain Research, 2016, 314, 181-189.                                                                            | 1.2 | 21        |
| 30 | Design and Characterization of Superpotent Bivalent Ligands Targeting Oxytocin Receptor Dimers via<br>a Channel-Like Structure. Journal of Medicinal Chemistry, 2016, 59, 7152-7166.                                                                          | 2.9 | 49        |
| 31 | Abuse potential of methylenedioxymethamphetamine (MDMA) and its derivatives in zebrafish: role of serotonin 5HT2-type receptors. Psychopharmacology, 2016, 233, 3031-3039.                                                                                    | 1.5 | 10        |
| 32 | LSD1 modulates stress-evoked transcription of immediate early genes and emotional behavior.<br>Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3651-3656.                                                         | 3.3 | 70        |
| 33 | Different attentional abilities among inbred mice strains using virtual object recognition task (VORT):<br>SNAP25+/â^' mice as a model of attentional deficit. Behavioural Brain Research, 2016, 296, 393-400.                                                | 1.2 | 10        |
| 34 | Association between SNAP-25 gene polymorphisms and cognition in autism: functional consequences and potential therapeutic strategies. Translational Psychiatry, 2015, 5, e500-e500.                                                                           | 2.4 | 76        |
| 35 | Spontaneous object and movement representations in 4-month-old human infants and albino Swiss mice. Cognition, 2015, 137, 63-71.                                                                                                                              | 1.1 | 4         |
| 36 | Different physiological and behavioural effects of e-cigarette vapour and cigarette smoke in mice.<br>European Neuropsychopharmacology, 2015, 25, 1775-1786.                                                                                                  | 0.3 | 76        |

| #  | Article                                                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | LSD1 Neurospecific Alternative Splicing Controls Neuronal Excitability in Mouse Models of Epilepsy.<br>Cerebral Cortex, 2015, 25, 2729-2740.                                                                                                                                                     | 1.6 | 51        |
| 38 | The cytisine derivatives, CC4 and CC26, reduce nicotine-induced conditioned place preference in zebrafish by acting on heteromeric neuronal nicotinic acetylcholine receptors. Psychopharmacology, 2014, 231, 4681-4693.                                                                         | 1.5 | 28        |
| 39 | Role of neuronal nicotinic acetylcholine receptors (nAChRs) on learning and memory in zebrafish.<br>Psychopharmacology, 2014, 231, 1975-1985.                                                                                                                                                    | 1.5 | 61        |
| 40 | A new model to study visual attention in zebrafish. Progress in Neuro-Psychopharmacology and<br>Biological Psychiatry, 2014, 55, 80-86.                                                                                                                                                          | 2.5 | 48        |
| 41 | Epileptiform Activity and Cognitive Deficits in SNAP-25+/â^' Mice are Normalized by Antiepileptic Drugs.<br>Cerebral Cortex, 2014, 24, 364-376.                                                                                                                                                  | 1.6 | 78        |
| 42 | Learning About Oxytocin: Pharmacologic and Behavioral Issues. Biological Psychiatry, 2014, 76, 360-366.                                                                                                                                                                                          | 0.7 | 65        |
| 43 | Mice discriminate between stationary and moving 2D shapes: Application to the object recognition task to increase attention. Behavioural Brain Research, 2013, 242, 95-101.                                                                                                                      | 1.2 | 21        |
| 44 | Cytoarchitectural, behavioural and neurophysiological dysfunctions in the <scp>BCNU</scp> â€ŧreated rat model of cortical dysplasia. European Journal of Neuroscience, 2013, 37, 150-162.                                                                                                        | 1.2 | 13        |
| 45 | Mice Heterozygous for the Oxytocin Receptor Gene ( <i>Oxtr</i> <sup><i>+/â^²</i></sup> ) Show Impaired<br>Social Behaviour but not Increased Aggression or Cognitive Inflexibility: Evidence of a Selective<br>Haploinsufficiency Gene Effect. Journal of Neuroendocrinology, 2013, 25, 107-118. | 1.2 | 92        |
| 46 | <scp>CC</scp> 4, a dimer of cytisine, is a selective partial agonist at î±4î²2/î±6î²2 <scp>nAChR</scp> with<br>improved selectivity for tobacco smoking cessation. British Journal of Pharmacology, 2013, 168,<br>835-849.                                                                       | 2.7 | 31        |
| 47 | Eps8 controls dendritic spine density and synaptic plasticity through its actin-capping activity. EMBO<br>Journal, 2013, 32, 1730-1744.                                                                                                                                                          | 3.5 | 54        |
| 48 | Neurohypophyseal hormones protect against pentylenetetrazole-induced seizures in zebrafish: Role of oxytocin-like and V1a-like receptor. Peptides, 2012, 37, 327-333.                                                                                                                            | 1.2 | 17        |
| 49 | Neurohypophyseal hormones manipulation modulate social and anxiety-related behavior in zebrafish.<br>Psychopharmacology, 2012, 220, 319-330.                                                                                                                                                     | 1.5 | 85        |
| 50 | Pharmacologic Rescue of Impaired Cognitive Flexibility, Social Deficits, Increased Aggression, and<br>Seizure Susceptibility in Oxytocin Receptor Null Mice: A Neurobehavioral Model of Autism. Biological<br>Psychiatry, 2011, 69, 875-882.                                                     | 0.7 | 315       |
| 51 | Learning and Memory Impairment Induced by Salvinorin A, the Principal Ingredient of <i>Salvia<br/>divinorum</i> , in Wistar Rats. International Journal of Toxicology, 2011, 30, 650-661.                                                                                                        | 0.6 | 25        |
| 52 | Pharmacokinetics and distribution of clioquinol in golden hamstersâ€. Journal of Pharmacy and Pharmacology, 2010, 59, 387-393.                                                                                                                                                                   | 1.2 | 11        |
| 53 | Cognitive memory control in borderline personality disorder patients. Psychological Medicine, 2009, 39, 845-853.                                                                                                                                                                                 | 2.7 | 19        |
| 54 | Expression of mutant β2 nicotinic receptors during development is crucial for epileptogenesis. Human<br>Molecular Genetics, 2009, 18, 1075-1088.                                                                                                                                                 | 1.4 | 37        |

| #  | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Effects of clioquinol on memory impairment and the neurochemical modifications induced by scrapie infection in golden hamsters. Brain Research, 2009, 1280, 195-200.                                                              | 1.1 | 17        |
| 56 | Changes in hippocampal morphology and neuroplasticity induced by adolescent THC treatment are associated with cognitive impairment in adulthood. Hippocampus, 2009, 19, 763-772.                                                  | 0.9 | 244       |
| 57 | The Depressive Phenotype Induced in Adult Female Rats by Adolescent Exposure to THC is Associated with Cognitive Impairment and Altered Neuroplasticity in the Prefrontal Cortex. Neurotoxicity Research, 2009, 15, 291-302.      | 1.3 | 117       |
| 58 | SNAPâ€⊋5 in Neuropsychiatric Disorders. Annals of the New York Academy of Sciences, 2009, 1152, 93-99.                                                                                                                            | 1.8 | 98        |
| 59 | Potential anxiolytic―and antidepressantâ€ŀike effects of salvinorin A, the main active ingredient of<br><i>Salvia divinorum</i> , in rodents. British Journal of Pharmacology, 2009, 157, 844-853.                                | 2.7 | 113       |
| 60 | Involvement of κ-Opioid and Endocannabinoid System on Salvinorin A-Induced Reward. Biological Psychiatry, 2008, 63, 286-292.                                                                                                      | 0.7 | 89        |
| 61 | Chronic Δ9-Tetrahydrocannabinol During Adolescence Provokes Sex-Dependent Changes in the<br>Emotional Profile in Adult Rats: Behavioral and Biochemical Correlates. Neuropsychopharmacology,<br>2008, 33, 2760-2771.              | 2.8 | 304       |
| 62 | Diazepam Protects Against the Enhanced Toxicity of Cocaine Adulterated With Atropine. Journal of Pharmacological Sciences, 2008, 107, 408-418.                                                                                    | 1.1 | 4         |
| 63 | Cellular Mechanisms Underlying the Anxiolytic Effect of Low Doses of Peripheral<br>Δ9-Tetrahydrocannabinol in Rats. Neuropsychopharmacology, 2007, 32, 2036-2045.                                                                 | 2.8 | 115       |
| 64 | Δ <sup>9</sup> â€Tetrahydrocannabinol (THC) and AM 404 protect against cerebral ischaemia in gerbils<br>through a mechanism involving cannabinoid and opioid receptors. British Journal of Pharmacology,<br>2007, 152, 1301-1311. | 2.7 | 34        |
| 65 | 5-HT1A receptors are involved in the anxiolytic effect of Δ9-tetrahydrocannabinol and AM 404, the<br>anandamide transport inhibitor, in Sprague–Dawley rats. European Journal of Pharmacology, 2007,<br>555, 156-163.             | 1.7 | 100       |
| 66 | Hallucinatory and rewarding effect of salvinorin A in zebrafish: κ-opioid and CB1-cannabinoid receptor involvement. Psychopharmacology, 2007, 190, 441-448.                                                                       | 1.5 | 122       |
| 67 | Vanilloid VR1 receptor is involved in rimonabant-induced neuroprotection. British Journal of Pharmacology, 2006, 147, 552-559.                                                                                                    | 2.7 | 66        |
| 68 | Capsaicin exhibits neuroprotective effects in a model of transient global cerebral ischemia in<br>Mongolian gerbils. British Journal of Pharmacology, 2005, 144, 727-735.                                                         | 2.7 | 84        |
| 69 | Endocannabinoids and 3,4-methylenedioxymethamphetamine (MDMA) interaction. Pharmacology<br>Biochemistry and Behavior, 2005, 81, 407-416.                                                                                          | 1.3 | 28        |
| 70 | 3,4 Methylenedioxymethamphetamine-induced conditioned place preference (CPP) is mediated by endocannabinoid system. Pharmacological Research, 2005, 51, 177-182.                                                                  | 3.1 | 56        |
| 71 | 16 Predominant Breastfeeding in The Maternity Ward and Infant's Feeding Practices Through The First<br>Year of Life. Pediatric Research, 2004, 56, 466-466.                                                                       | 1.1 | 0         |
| 72 | Δ9-Tetrahydrocannabinol-induced conditioned place preference and intracerebroventricular self-administration in rats. European Journal of Pharmacology, 2004, 506, 63-69.                                                         | 1.7 | 132       |

| #  | Article                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | In vivo Model for the Evaluation of Molecules Active Towards Transmissible Spongiform Encephalopathies. Veterinary Research Communications, 2004, 28, 307-310.                        | 0.6 | 7         |
| 74 | Sox2 deficiency causes neurodegeneration and impaired neurogenesis in the adult mouse brain.<br>Development (Cambridge), 2004, 131, 3805-3819.                                        | 1.2 | 587       |
| 75 | Cognitive function in young and adult IL (interleukin)-6 deficient mice. Behavioural Brain Research, 2004, 153, 423-429.                                                              | 1.2 | 144       |
| 76 | Neurochemical and behavioural modifications induced by scrapie infection in golden hamsters. Brain Research, 2003, 984, 237-241.                                                      | 1.1 | 9         |
| 77 | Post-ischemic treatment with cannabidiol prevents electroencephalographic flattening,<br>hyperlocomotion and neuronal injury in gerbils. Neuroscience Letters, 2003, 346, 61-64.      | 1.0 | 66        |
| 78 | 3,4 Methylenedioxymethamphetamine (ecstasy) impairs eight-arm radial maze performance and arm entry pattern in rats Behavioral Neuroscience, 2002, 116, 298-304.                      | 0.6 | 21        |
| 79 | Role of the endocannabinoid system in MDMA intracerebral self-administration in rats. British<br>Journal of Pharmacology, 2002, 136, 1089-1092.                                       | 2.7 | 52        |
| 80 | 3,4 Methylenedioxymethamphetamine (ecstasy) impairs eight-arm radial maze performance and arm entry pattern in rats Behavioral Neuroscience, 2002, 116, 298-304.                      | 0.6 | 13        |
| 81 | Involvement of CDC25Mm/Ras-GRF1-Dependent Signaling in the Control of Neuronal Excitability.<br>Molecular and Cellular Neurosciences, 2001, 18, 691-701.                              | 1.0 | 26        |
| 82 | Conditioned place preference induced by the cannabinoid agonist CP 55,940: interaction with the opioid system. Neuroscience, 2001, 104, 923-926.                                      | 1.1 | 144       |
| 83 | Intracerebral self-administration of the cannabinoid receptor agonist CP 55,940 in the rat: interaction with the opioid system. European Journal of Pharmacology, 2001, 413, 227-234. | 1.7 | 107       |
| 84 | Effects of molsidomine on scopolamine-induced amnesia and hypermotility in the rat. European<br>Journal of Pharmacology, 2001, 426, 193-200.                                          | 1.7 | 61        |
| 85 | Eptastigmine: Ten Years of Pharmacology, Toxicology, Pharmacokinetic, and Clinical Studies. CNS<br>Neuroscience & Therapeutics, 2001, 7, 369-386.                                     | 4.0 | 31        |
| 86 | Cannabinoid-induced working memory impairment is reversed by a second generation cholinesterase inhibitor in rats. NeuroReport, 2000, 11, 2025-2029.                                  | 0.6 | 51        |
| 87 | In vivo characterization of the specific cannabinoid receptor antagonist, SR141716A: Behavioral and cellular responses after acute and chronic treatments. , 2000, 35, 8-14.          |     | 46        |
| 88 | CP 55,940 protects against ischemia-induced electroencephalographic flattening and hyperlocomotionin Mongolian gerbils. Neuroscience Letters, 2000, 296, 69-72.                       | 1.0 | 40        |
| 89 | EXCITATORY AND INHIBITORY EFFECTS OF SECOND-GENERATION CHOLINESTERASE INHIBITORS ON RAT GASTROINTESTINAL TRANSIT. Pharmacological Research, 2000, 41, 671-677.                        | 3.1 | 4         |
| 90 | Eptastigmine improves eight-arm radial maze performance in aged rats. Pharmacological Research, 2000, 42, 299-304.                                                                    | 3.1 | 14        |

| #   | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Eptastigmine restores the aged rat's normal cortical spectral power pattern. Pharmacological<br>Research, 2000, 42, 495-500.                                                                            | 3.1 | 6         |
| 92  | Long-Lasting Antiamnesic Effect of a Novel Anticholinesterase Inhibitor (MF268). Pharmacology<br>Biochemistry and Behavior, 1998, 59, 897-901.                                                          | 1.3 | 15        |
| 93  | A novel method for self-administering addicting drugs intracerebroventricularly in a free-choice procedure. Brain Research Protocols, 1998, 3, 135-141.                                                 | 1.7 | 7         |
| 94  | Polydeoxyribonucleotide (defibrotide) protects against post-ischemic behavioral,<br>electroencephalographic and neuronal damage in the gerbil. European Journal of Pharmacology, 1997,<br>328, 143-152. | 1.7 | 14        |
| 95  | Naltrexone, Naltrindole, and CTOP Block Cocaine-Induced Sensitization to Seizures and Death.<br>Peptides, 1997, 18, 1189-1195.                                                                          | 1.2 | 11        |
| 96  | An inverted U-shaped curve for heptylphysostigmine on radial maze performance in rats: comparison with other cholinesterase inhibitors. European Journal of Pharmacology, 1996, 302, 13-20.             | 1.7 | 97        |
| 97  | Different kinetics of tolerance to behavioral and electroencephalographic effects of chlordiazepoxide in the rat. European Journal of Pharmacology, 1995, 273, 35-45.                                   | 1.7 | 10        |
| 98  | Eeg power spectra and behavioural correlates in rats given chronic morphine. lack of residual<br>long-term eeg and neuronal changes. Pharmacological Research, 1995, 32, 95-103.                        | 3.1 | 8         |
| 99  | Behavioral and biochemical evidence of opioidergic involvement in cocaine sensitization. Journal of Pharmacology and Experimental Therapeutics, 1995, 274, 450-7.                                       | 1.3 | 36        |
| 100 | Influence of opioid system on behavioral sensitization induced by cocaine in the rat. Regulatory Peptides, 1994, 53, S199-S200.                                                                         | 1.9 | 1         |
| 101 | Relationship between morphine and etonitazene-induced working memory impairment and analgesia.<br>European Journal of Pharmacology, 1994, 271, 497-504.                                                 | 1.7 | 26        |
| 102 | Chronic morphine affects working memory during treatment and withdrawal in rats. Behavioural<br>Pharmacology, 1994, 5, 570-580.                                                                         | 0.8 | 48        |
| 103 | Possibility of Spontaneous Drug Abuse Tested in Rat. Pharmacological Research, 1993, 28, 21-34.                                                                                                         | 3.1 | 1         |
| 104 | Dose-dependent conditioned place preference produced by etonitazene and morphine. European<br>Journal of Pharmacology, 1992, 217, 37-41.                                                                | 1.7 | 30        |
| 105 | Effect of centrally administered atropine and pirenzepine on radial arm maze performance in the rat.<br>European Journal of Pharmacology, 1991, 194, 45-49.                                             | 1.7 | 51        |
| 106 | Inability of etonitazene and haloperidol to elicit conditioned taste aversion. Pharmacological<br>Research, 1990, 22, 64.                                                                               | 3.1 | 0         |
| 107 | Quantified EEG in different hypertensive rat strains and its modifications by oxiracetam (OXI).<br>Pharmacological Research, 1990, 22, 17-18.                                                           | 3.1 | 0         |
| 108 | Central effect of yohimbine on sexual behavior in the rat. Physiology and Behavior, 1990, 47, 165-173.                                                                                                  | 1.0 | 47        |

| #   | Article                                                                                                                                                                                  | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Oral opiate intake in a free-choice procedure in the rat. Pharmacological Research, 1989, 21, 67-68.                                                                                     | 3.1 | 2         |
| 110 | Supraspinal cerebral areas involved in morphine's intestinal inhibition and analgesia. Pharmacology<br>Biochemistry and Behavior, 1988, 30, 319-324.                                     | 1.3 | 8         |
| 111 | Further investigations on neurotensin as central modulator of intestinal motility in rats. Regulatory Peptides, 1987, 17, 111-117.                                                       | 1.9 | 4         |
| 112 | Intestinal effect and analgesia: Evidence for different involvement of opioid receptor subtypes in periaqueductal gray matter. European Journal of Pharmacology, 1986, 120, 95-99.       | 1.7 | 14        |
| 113 | Cerebral sites of central action of dermorphin on intestinal motility in the rat. Peptides, 1985, 6, 149-153.                                                                            | 1.2 | 9         |
| 114 | Central pharmacological activities and opiate receptor binding studies of some dermorphin analogs.<br>Peptides, 1985, 6, 155-159.                                                        | 1.2 | 31        |
| 115 | Dermorphin interaction with peripheral opioid receptors. Neuropeptides, 1984, 5, 157-160.                                                                                                | 0.9 | 18        |
| 116 | Central and peripheral components of dermorphin's effect on rat intestinal propulsion in comparison to morphine. Peptides, 1983, 4, 55-58.                                               | 1.2 | 11        |
| 117 | Effect on intestinal transit of neurotensin administered intracerebroventricularly to rats. Life Sciences, 1983, 33, 485-488.                                                            | 2.0 | 11        |
| 118 | Involvement of periaqueductal gray matter in intestinal effect of centrally administered morphine.<br>European Journal of Pharmacology, 1983, 91, 251-254.                               | 1.7 | 16        |
| 119 | Increase of plasma corticosterone induced by loperamide in rats. European Journal of Pharmacology, 1982, 79, 101-104.                                                                    | 1.7 | 4         |
| 120 | Effect of intracerebroventricular administration of morphine upon intestinal motility in rat and its antagonism with naloxone. European Journal of Pharmacology, 1977, 46, 329-338.      | 1.7 | 82        |
| 121 | Liver tyrosine-alpha-ketoglutarate transaminase as a quantitative test of the phlogistic potency of agents topically applied. Pharmacological Research Communications, 1976, 8, 463-468. | 0.2 | 1         |