
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/206502/publications.pdf Version: 2024-02-01

TSUNEIL SANO

#	Article	IF	CITATIONS
1	Revealing scenarios of interzeolite conversion from FAU to AEI through the variation of starting materials. Physical Chemistry Chemical Physics, 2022, 24, 4136-4146.	1.3	13
2	Dual Templating for AFX/LEV Intergrowth Zeolite. Chemistry Letters, 2022, 51, 121-123.	0.7	1
3	Preyssler-type phosphotungstate is a new family of negative-staining reagents for the TEM observation of viruses. Scientific Reports, 2022, 12, 7554.	1.6	9
4	Dealumination of small-pore zeolites through pore-opening migration process with the aid of pore-filler stabilization. Science Advances, 2022, 8, .	4.7	9
5	Ultrafast dealumination of *BEA zeolite using a continuous-flow reactor. Advanced Powder Technology, 2022, 33, 103702.	2.0	1
6	In situ/operando spectroscopic studies on NH3–SCR reactions catalyzed by a phosphorus-modified Cu-CHA zeolite. Catalysis Today, 2021, 376, 73-80.	2.2	12
7	Ultrafast and continuous-flow synthesis of AFX zeolite <i>via</i> interzeolite conversion of FAU zeolite. Reaction Chemistry and Engineering, 2021, 6, 74-81.	1.9	7
8	Tracking the crystallization behavior of high-silica FAU during AEI-type zeolite synthesis using acid treated FAU-type zeolite. RSC Advances, 2021, 11, 23082-23089.	1.7	10
9	Multiple templating strategy for the control of aluminum and phosphorus distributions in AFX zeolite. Microporous and Mesoporous Materials, 2021, 321, 111124.	2.2	5
10	Synthesis of Phosphorus-Modified AFX Zeolite by the Hydrothermal Conversion of Tetraalkylphosphonium Hydroxide-Impregnated FAU Zeolite. Bulletin of the Chemical Society of Japan, 2021, 94, 1-7.	2.0	6
11	Recent progress in the improvement of hydrothermal stability of zeolites. Chemical Science, 2021, 12, 7677-7695.	3.7	49
12	Formation Pathway of AEI Zeolites as a Basis for a Streamlined Synthesis. Chemistry of Materials, 2020, 32, 60-74.	3.2	30
13	Theoretical study on 31P NMR chemical shifts of phosphorus-modified CHA zeolites. Microporous and Mesoporous Materials, 2020, 294, 109908.	2.2	26
14	Triple-template system for phosphorus-modified AFX/CHA intergrowth zeolite. Microporous and Mesoporous Materials, 2020, 309, 110540.	2.2	5
15	High-quality synthesis of a nanosized CHA zeolite by a combination of a starting FAU zeolite and aluminum sources. Dalton Transactions, 2020, 49, 9972-9982.	1.6	21
16	Synthesis of Preyssler-Type Phosphotungstate with Sodium Cation in the Central Cavity through Migration of the Ion. Bulletin of the Chemical Society of Japan, 2020, 93, 461-466.	2.0	5
17	<i>In Situ</i> Spectroscopic Studies on the Redox Cycle of NH ₃ â^`SCR over Cuâ^`CHA Zeolites. ChemCatChem, 2020, 12, 3050-3059.	1.8	64
18	Rapid Synthesis of Hydrothermally Stable ZSM-5 in the Presence of 1-Butanol. Chemistry Letters, 2020, 49, 1006-1008.	0.7	5

#	Article	IF	CITATIONS
19	Comparison of sulfonic acid loaded mesoporous silica in transesterification of triacetin. Reaction Kinetics, Mechanisms and Catalysis, 2019, 126, 167-179.	0.8	22
20	Immobilizaion of Preyssler type heteropoly acids on siliceous mesporous supports and their catalytic activities in the dehydration of ethanol. Reaction Kinetics, Mechanisms and Catalysis, 2019, 128, 139-147.	0.8	6
21	Condensed ferric dimers for green photocatalytic synthesis of nylon precursors. Chemical Science, 2019, 10, 6604-6611.	3.7	14
22	Photocatalytic Activation of C–H Bonds by Spatially Controlled Chlorine and Titanium on the Silicate Layer. ACS Catalysis, 2019, 9, 5742-5751.	5.5	22
23	Synthesis of GME zeolite with high porosity by hydrothermal conversion of FAU zeolite using a dual-template method with tetraethylphosphonium and N,N-dimethyl-3,5-dimethylpiepridinium hydroxides. Journal of Porous Materials, 2019, 26, 1345-1352.	1.3	8
24	Phosphorus modified small-pore zeolites and their catalytic performances in ethanol conversion and NH3-SCR reactions. Applied Catalysis A: General, 2019, 575, 204-213.	2.2	33
25	Microporous materials formed via intercalation of ultrathin coordination polymers in a layered silicate. Nano Energy, 2019, 59, 162-168.	8.2	8
26	A Sandwich Complex of Bismuth Cation and Mono‣acunary αâ€Kegginâ€Type Phosphotungstate: Preparation and Structural Characterisation. European Journal of Inorganic Chemistry, 2019, 2019, 357-362.	1.0	8
27	Facile synthesis of highly crystalline EMT zeolite by hydrothermal conversion of FAU zeolite in the presence of 1,1'-(1,4-butanediyl)bis(1-azonia-4-azabicyclo [2,2,2]octane) dihydroxide. Microporous and Mesoporous Materials, 2019, 274, 299-303.	2.2	8
28	Zeolite hydrothermal conversion in the presence of various cyclic alkylammonium cations and synthesis of nanosized BEA and MFI zeolites. Microporous and Mesoporous Materials, 2019, 277, 115-123.	2.2	16
29	Comparative study between high-silica faujasites (FAU) from organic-free system and the commercial zeolite Y. Microporous and Mesoporous Materials, 2019, 276, 154-159.	2.2	22
30	Preparation of Preyssler-type Phosphotungstate with One Central Potassium Cation and Potassium Cation Migration into the Preyssler Molecule to form Di-Potassium-Encapsulated Derivative. ACS Omega, 2018, 3, 2363-2373.	1.6	17
31	Synthesis of phosphorus-modified AFX zeolite using a dual-template method with tetraethylphosphonium hydroxide as phosphorus modification agent. Microporous and Mesoporous Materials, 2018, 267, 192-197.	2.2	22
32	A Collective Case Screening of the Zeolites made in Japan for High Performance NH3-SCR of NOx. Bulletin of the Chemical Society of Japan, 2018, 91, 355-361.	2.0	36
33	Reactivity of a (Benzene)Ruthenium(II) Cation on a Di-lacunary Î ³ -Keggin-Type Silicotungstate and Synthesis of a Mono-(Benzene)Ruthenium(II)-Attached Î ³ -Keggin-Type Silicotungstate. European Journal of Inorganic Chemistry, 2018, 2018, 1776-1776.	1.0	0
34	Highly Active Layered Titanosilicate Catalyst with High Surface Density of Isolated Titanium on the Accessible Interlayer Surface. ChemCatChem, 2018, 10, 2536-2540.	1.8	25
35	Reactivity of a (Benzene)Ruthenium(II) Cation on a Diâ€lacunary γâ€Kegginâ€Type Silicotungstate and Synthesis of a Monoâ€(Benzene)Ruthenium(II)â€Attached γâ€Kegginâ€Type Silicotungstate. European Journal of Inorganic Chemistry, 2018, 2018, 1778-1786.	1.0	4
36	Iron Aquo Complex as an Efficient and Selective Homogeneous Photocatalyst for Organic Synthetic Reactions. ChemCatChem, 2018, 10, 4509-4513.	1.8	10

#	Article	IF	CITATIONS
37	An Isomorphously Substituted Fe-BEA Zeolite with High Fe Content: Facile Synthesis and Characterization. Journal of Nanoscience and Nanotechnology, 2018, 18, 11-19.	0.9	6
38	Stepwise Gel Preparation for High-Quality CHA Zeolite Synthesis: AÂCommon Tool for Synthesis Diversification. Crystal Growth and Design, 2018, 18, 5652-5662.	1.4	15
39	Synthesis of ε-Keggin-Type Cobaltomolybdate-Based 3D Framework Material and Characterization Using Atomic-Scale HAADF-STEM and XANES. Inorganic Chemistry, 2017, 56, 2042-2049.	1.9	13
40	ZTS-1 and ZTS-2: Novel intergrowth zeolites with AFX/CHA structure. Microporous and Mesoporous Materials, 2017, 254, 160-169.	2.2	22
41	Design of a highly active base catalyst through utilizing organic-solvent-treated layered silicate Hiroshima University Silicates. Dalton Transactions, 2017, 46, 7441-7450.	1.6	16
42	Mesoporous MCM-48 Immobilized with Aminopropyltriethoxysilane: A Potential Catalyst for Transesterification of Triacetin. Catalysis Letters, 2017, 147, 1040-1050.	1.4	32
43	Incorporation of various heterometal atoms in CHA zeolites by hydrothermal conversion of FAU zeolite and their performance for selective catalytic reduction of NO x with ammonia. Microporous and Mesoporous Materials, 2017, 246, 89-101.	2.2	27
44	Enhanced Photocatalytic Activity of a Layered Titanate Achieved via Simple Mixing with TiO2-Based Photocatalysts as Additives. Bulletin of the Chemical Society of Japan, 2017, 90, 1276-1278.	2.0	3
45	Thermally stable nanosized LEV zeolites synthesized by hydrothermal conversion of FAU zeolites in the presence of N,N-dimethylpiperidinium cations. Journal of Materials Chemistry A, 2017, 5, 19245-19254.	5.2	34
46	Production of Light Olefins from Methanol and Ethanol Using ZSM-5 Type Zeolite Catalysts. Journal of the Japan Petroleum Institute, 2017, 60, 263-276.	0.4	6
47	Remarkable Charge Separation and Photocatalytic Efficiency Enhancement through Interconnection of TiO ₂ Nanoparticles by Hydrothermal Treatment. Angewandte Chemie, 2016, 128, 3664-3669.	1.6	16
48	Fe oxide nanoparticles/Ti-modified mesoporous silica as a photo-catalyst for efficient and selective cyclohexane conversion with O ₂ and solar light. Journal of Materials Chemistry A, 2016, 4, 15829-15835.	5.2	26
49	One-pot Synthesis of Phosphorus-modified AEI Zeolites Derived by the Dual-template Method as a Durable Catalyst with Enhanced Thermal/Hydrothermal Stability for Selective Catalytic Reduction of NO <i>_x</i> by NH ₃ . Chemistry Letters, 2016, 45, 122-124.	0.7	36
50	Encapsulation of Two Potassium Cations in Preyssler-Type Phosphotungstates: Preparation, Structural Characterization, Thermal Stability, Activity as an Acid Catalyst, and HAADF-STEM Images. Inorganic Chemistry, 2016, 55, 11583-11592.	1.9	13
51	Remarkable Charge Separation and Photocatalytic Efficiency Enhancement through Interconnection of TiO ₂ Nanoparticles by Hydrothermal Treatment. Angewandte Chemie - International Edition, 2016, 55, 3600-3605.	7.2	116
52	Preparation of α ₁ - and α ₂ -isomers of mono-Ru-substituted Dawson-type phosphotungstates with an aqua ligand and comparison of their redox potentials, catalytic activities, and thermal stabilities with Keggin-type derivatives. Dalton Transactions, 2016, 45, 3715-3726.	1.6	16
53	Nanosized CHA zeolites with high thermal and hydrothermal stability derived from the hydrothermal conversion of FAU zeolite. Microporous and Mesoporous Materials, 2016, 225, 524-533.	2.2	86
54	Synthesis of phosphorus-modified small-pore zeolites utilizing tetraalkyl phosphonium cations as both structure-directing and phosphorous modification agents. Microporous and Mesoporous Materials, 2016, 223, 129-139.	2.2	51

#	Article	IF	CITATIONS
55	Development of ZSM-5-Type Zeolite Catalysts Containing Alkaline Earth Metals for Conversion of Methanol to Light Olefins. Advanced Porous Materials, 2016, 4, 9-23.	0.3	2
56	Hydrothermal Conversion of Titanated FAU to AEI Zeolite and Its Enhanced Catalytic Performance for NO _{<i>x</i>} Reduction. Advanced Porous Materials, 2016, 4, 62-72.	0.3	12
57	Synthesis of Fe-Based BEA Zeolites in Fluoride Media and Their Catalytic Performance in the NH ₃ -SCR of NO _{<i>x</i>} . Advanced Porous Materials, 2016, 4, 125-133.	0.3	2
58	CHA Zeolite Membrane. , 2016, , 360-362.		0
59	Fe Species in Isomorphously Substituted Fe-Based BEA Zeolites for Low-Temperature Selective Catalytic Reduction of NO _{<i>x</i>} . Advanced Porous Materials, 2016, 4, 91-101.	0.3	0
60	Preparation and Structural Characterization of Mono-Ru-Substituted α2-Dawson-Type Phosphotungstate with a Carbonyl Ligand and Other Ru(CO)-Substituted Heteropolytungstates. European Journal of Inorganic Chemistry, 2015, 2015, 2714-N2723.	1.0	10
61	Cation Effect on Formation of Preysslerâ€type 30â€Tungstoâ€5â€phosphate: Enhanced Yield of Naâ€encapsulate Derivative and Direct Synthesis of Ca―and Biâ€Encapsulated Derivatives. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2015, 641, 2670-2676.	ed 0.6	20
62	Synthesis of titanated chabazite with enhanced thermal stability by hydrothermal conversion of titanated faujasite. Microporous and Mesoporous Materials, 2015, 215, 58-66.	2.2	32
63	Highly active and selective Ti-incorporated porous silica catalysts derived from grafting of titanium(<scp>iv</scp>)acetylacetonate. Journal of Materials Chemistry A, 2015, 3, 15280-15291.	5.2	30
64	Design of Microporous Material HUS-10 with Tunable Hydrophilicity, Molecular Sieving, and CO ₂ Adsorption Ability Derived from Interlayer Silylation of Layered Silicate HUS-2. ACS Applied Materials & Interfaces, 2015, 7, 24360-24369.	4.0	20
65	Synthesis of high-silica AEI zeolites with enhanced thermal stability by hydrothermal conversion of FAU zeolites, and their activity in the selective catalytic reduction of NO _x with NH ₃ . Journal of Materials Chemistry A, 2015, 3, 857-865.	5.2	95
66	Functionalization of Layered Titanates. Journal of Nanoscience and Nanotechnology, 2014, 14, 2135-2147.	0.9	48
67	Preparation and Characterization of Preysslerâ€type Phosphotungstic Acid, H _{15–<i>n</i>} [P ₅ W ₃₀ O ₁₁₀ <i>Mⁿ</i> with Different Encapsulated Cations (<i>M</i> = Na, Ca, Bi, Eu, Y, or Ce), and their Thermal Stability and Acid Catalvst Properties. Zeitschrift Fur Anorganische Und Allgemeine Chemie. 2014. 640. 1314-1321.	⊦], 0.6	20
68	Effect of crystal size and surface modification of ZSM-5 zeolites on conversion of ethanol to propylene. Journal of Porous Materials, 2014, 21, 433-440.	1.3	17
69	Synthesis and characteristics of novel layered silicate HUS-7 using benzyltrimethylammonium hydroxide and its unique and selective phenol adsorption behavior. Journal of Materials Chemistry A, 2014, 2, 3372.	5.2	22
70	Extraordinary effects of an argon atmosphere on TiO2 photocatalysis. Physical Chemistry Chemical Physics, 2014, 16, 7913.	1.3	3
71	Microporous titanate nanofibers for highly efficient UV-protective transparent coating. Journal of Materials Chemistry A, 2014, 2, 16381-16388.	5.2	46
72	Design of Layered Silicate by Grafting with Metal Acetylacetonate for High Activity and Chemoselectivity in Photooxidation of Cyclohexane. ACS Applied Materials & Interfaces, 2014, 6, 4616-4621.	4.0	28

#	Article	IF	CITATIONS
73	Preparation and Redox Studies of α ₁ - and α ₂ -lsomers of Mono-Ru-Substituted Dawson-type Phosphotungstates with a DMSO Ligand: [α ₁ /α ₂ -P ₂ W ₁₇ O ₆₁ Ru ^{II} (DMSO)]< Inorganic Chemistry, 2014, 53, 3526-3539.	1.9 sup>8–	<16 .
74	Synthesis and Structural Characterization of Isomers of Ru-Substituted Keggin-Type Germanotungstate with dmso Ligand. Journal of Cluster Science, 2014, 25, 755-770.	1.7	9
75	Recreation of BrÃ,nsted acid sites in phosphorus-modified HZSM-5(Ga) by modification with various metal cations. Applied Catalysis A: General, 2014, 481, 161-168.	2.2	14
76	Hydrothermal conversion of FAU and â^—BEA-type zeolites into MAZ-type zeolites in the presence of non-calcined seed crystals. Microporous and Mesoporous Materials, 2014, 196, 254-260.	2.2	38
77	Incorporation of Heteropolyacids into Layered Silicate HUS-2 Grafted with 3-(Aminopropyl)triethoxysilane. Bulletin of the Chemical Society of Japan, 2014, 87, 1379-1385.	2.0	10
78	Surface silylation of silicalite membranes and their pervaporation performance for the separation of ethanol from ethanol-water mixtures. Journal of the Ceramic Society of Japan, 2014, 122, 357-360.	0.5	1
79	An Efficient Way to Synthesize Hiroshima University Silicate-1 (HUS-1) and the Selective Adsorption Property of Ni2+ from Seawater. Bulletin of the Chemical Society of Japan, 2014, 87, 160-166.	2.0	10
80	Facile Synthesis of AEI Zeolites by Hydrothermal Conversion of FAU Zeolites in the Presence of Tetraethylphosphonium Cations. Chemistry Letters, 2014, 43, 302-304.	0.7	52
81	ã€Original Contribution〠Preparation of High–Silica Chabazite Membrane. Membrane, 2014, 39, 56-60.	0.0	3
82	CHA Zeolite Membrane. , 2014, , 1-3.		0
83	Layered Silicate as an Excellent Partner of a TiO ₂ Photocatalyst for Efficient and Selective Green Fine-Chemical Synthesis. Journal of the American Chemical Society, 2013, 135, 11784-11786.	6.6	57
84	Characterization of layered silicate HUS-5 and formation of novel nanoporous silica through transformation of HUS-5 ion-exchanged with alkylammonium cations. Journal of Materials Chemistry A, 2013, 1, 9680.	5.2	13
85	Preparation of tetrabutylammonium salt of a mono-Ru(iii)-substituted α-Keggin-type silicotungstate with a 4,4′-bipyridine ligand and its electrochemical behaviour in organic solvents. Dalton Transactions, 2013, 42, 7190.	1.6	12
86	Precisely designed layered silicate as an effective and highly selective CO2 adsorbent. Chemical Communications, 2013, 49, 9027.	2.2	24
87	Determination of I±-Reggin structure of [GeW ₁₁ O ₃₉ Ru ^{III} (H ₂ O)] ^{5â⁻,} . Reaction of [GeW ₁₁ O ₃₉ Ru ^{III} (H ₂ O)] ^{5â⁻,} with dimethyl sulfoxide to form [GeW ₁₁ O ₃₉ Ru ^{III} (dmso)] ^{5â⁻,} and their	1.6	20
88	Structural characterization. Dattom fransactions, 2013, 42, 2540-2546. One-pot synthesis of microporous and mesoporous (NH4)3PW12O40 by reaction of in-situ generated PW12O4O3â^' with NH4+ in a strongly acidic solution. Materials Research Bulletin, 2013, 48, 4157-4162.	2.7	5
89	First synthesis of SAPO molecular sieve with LTL-type structure by hydrothermal conversion of	2.2	9
	SAPO-37 with FAU-type structure. Microporous and Mesoporous Materials, 2013, 179, 224-230.		

#	Article	lF	CITATIONS
91	Ternary modified TiO2 as a simple and efficient photocatalyst for green organic synthesis. Chemical Communications, 2013, 49, 3652.	2.2	26
92	Role of Structural Similarity Between Starting Zeolite and Product Zeolite in the Interzeolite Conversion Process. Journal of Nanoscience and Nanotechnology, 2013, 13, 3020-3026.	0.9	67
93	Combustion of volatile organic compounds over composite catalyst of Pt/γ-Al ₂ O ₃ and beta zeolite. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2013, 48, 667-674.	0.9	8
94	Effect of Structure-Directing Agents on FAU–CHA Interzeolite Conversion and Preparation of High Pervaporation Performance CHA Zeolite Membranes for the Dehydration of Acetic Acid Solution. Bulletin of the Chemical Society of Japan, 2013, 86, 1333-1340.	2.0	19
95	Molecular Recognitive Adsorption of Aqueous Propionic Acid on Hiroshima University Silicate-2 (HUS-2). Chemistry Letters, 2013, 42, 244-246.	0.7	8
96	High Potential of Interzeolite Conversion Method for Zeolite Synthesis. Journal of the Japan Petroleum Institute, 2013, 56, 183-197.	0.4	87
97	Conversion of Ethanol into Propylene over TON Type Zeolite. Journal of the Japan Petroleum Institute, 2013, 56, 22-31.	0.4	10
98	Effect of Oxygen Concentration in NH ₃ -SCR Reaction over Fe- and Cu-loaded Beta Zeolites. Journal of the Japan Petroleum Institute, 2012, 55, 57-66.	0.4	6
99	Adsorption of Toluene on Alkali Metal Ion-Exchanged ZSM-5 and β-Zeolites under Humid Conditions. Bulletin of the Chemical Society of Japan, 2012, 85, 869-876.	2.0	15
100	Effective and Selective Bisphenol A Synthesis on a Layered Silicate with Spatially Arranged Sulfonic Acid. ACS Applied Materials & Interfaces, 2012, 4, 2186-2191.	4.0	29
101	Hydrothermal and solid-state transformation of ruthenium-supported Keggin-type heteropolytungstates [XW11O39{Ru(ii)(benzene)(H2O)}]nâ´´ (X = P (n = 5), Si (n = 6), Ge (n = 6)) to ruthenium-substituted Keggin-type heteropolytungstates. Dalton Transactions, 2012, 41, 9901.	1.6	33
102	Synthesis and characteristics of novel layered silicates HUS-2 and HUS-3 derived from a SiO2–choline hydroxide–NaOH–H2O system. Journal of Materials Chemistry, 2012, 22, 13682.	6.7	39
103	Molecular recognitive adsorption of aqueous tetramethylammonium on the organic derivative of Hiroshima University Silicate-1 with a silane coupling reagent. Chemical Communications, 2012, 48, 7073.	2.2	17
104	Highly efficient and selective sunlight-induced photocatalytic oxidation of cyclohexane on an eco-catalyst under a CO2 atmosphere. Green Chemistry, 2012, 14, 1264.	4.6	27
105	Sunlight-induced effective heterogeneous photocatalytic decomposition of aqueous organic pollutants to CO2 assisted by a CO2 sorbent, amine-containing mesoporous silica. Chemical Communications, 2012, 48, 5521.	2.2	9
106	Efficient and Selective Photocatalytic Cyclohexane Oxidation on a Layered Titanate Modified with Iron Oxide under Sunlight and CO ₂ Atmosphere. ACS Catalysis, 2012, 2, 1910-1915.	5.5	61
107	Stabilization of Highâ€Valence Ruthenium with Silicotungstate Ligands: Preparation, Structural Characterization, and Redox Studies of Ruthenium(III)â€6ubstituted αâ€Kegginâ€Type Silicotungstates with Pyridine Ligands, [SiW ₁₁ O ₃₉ Ru ^{III} (Py)] ^{5â^'} . Chemistry - an Asian Journal, 2012, 7, 1331-1339.	1.7	27
108	Conversion of ethanol to propylene over HZSM-5(Ga) co-modified with lanthanum and phosphorous. Applied Catalysis A: General, 2012, 417-418, 137-144.	2.2	33

#	Article	IF	CITATIONS
109	Acid stability evaluation of CHA-type zeolites synthesized by interzeolite conversion of FAU-type zeolite and their membrane application for dehydration of acetic acid aqueous solution. Microporous and Mesoporous Materials, 2012, 158, 141-147.	2.2	90
110	Transformation of LEV-type zeolite into less dense CHA-type zeolite. Microporous and Mesoporous Materials, 2012, 158, 117-122.	2.2	71
111	Synthesis and Crystal Structure of a Layered Silicate HUS-1 with a Halved Sodalite-Cage Topology. Inorganic Chemistry, 2011, 50, 2294-2301.	1.9	34
112	Sunlight-induced efficient and selective photocatalytic benzene oxidation on TiO2-supported gold nanoparticles under CO2 atmosphere. Chemical Communications, 2011, 47, 11531.	2.2	55
113	Ethylbenzene dehydrogenation over FeOx/(Mg,Zn)(Al)O catalysts derived from hydrotalcites: Role of MgO as basic sites. Applied Catalysis A: General, 2011, 398, 113-122.	2.2	37
114	Preparation of Crystalline Tungsten Oxide Nanorods with Enhanced Photocatalytic Activity under Visible Light Irradiation. Chemistry Letters, 2011, 40, 443-445.	0.7	19
115	Molybdenum Cluster Halide Compound Mo6Cl12(OH2)2 with Six-Handed Linkage Hydrogen Bonding. Bulletin of the Chemical Society of Japan, 2011, 84, 379-385.	2.0	4
116	Incorporation of highly dispersed aluminum into inner surfaces of supermicroporous silica using anionic surfactant. Journal of Porous Materials, 2011, 18, 493-500.	1.3	2
117	Hydrothermal conversion of FAU zeolite into LEV zeolite in the presence of non-calcined seed crystals. Journal of Crystal Growth, 2011, 325, 96-100.	0.7	45
118	Preparation and StructuralCharacterization of Ru ^{II} â€DMSO and Ru ^{III} â€DMSOâ€substituted αâ€Kegginâ€type Phosphotungstates, [PW ₁₁ O ₃₉ Ru ^{II} DMSO] ^{5–} and [PW ₁₁ O ₃₉ Ru ^{III} DMSO] ^{4–} , and Catalytic Activity for	0.6	31
119	Water Oxidation. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2011, 637, 1467-1474. Thermal Stability and Acidic Strength of Preysslerâ€Type Phosphotungstic Acid, H ₁₄ [P ₅ W ₃₀ O ₁₁₀ Na] and It's Catalytic Activity for Hydrolysis of Alkyl Acetates. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2011, 637, 2120-2124.	0.6	18
120	Influence of structural differences and acidic properties of phosphotungstic acids on their catalytic performance for acylation of pyruvate ester to α-acyloxyacrylate ester. Catalysis Today, 2011, 164, 107-111.	2.2	11
121	Unique surface property of surfactant-assisted mesoporous calcium phosphate. Microporous and Mesoporous Materials, 2011, 141, 56-60.	2.2	9
122	Synthesis of high-silica CHA type zeolite by interzeolite conversion of FAU type zeolite in the presence of seed crystals. Microporous and Mesoporous Materials, 2011, 144, 91-96.	2.2	107
123	Ethylbenzene dehydrogenation over Mg3Fe0.5â ^{°,} xCoxAl0.5 catalysts derived from hydrotalcites: Comparison with Mg3Fe0.5â ^{°,} yNiyAl0.5 catalysts. Applied Catalysis A: General, 2011, 396, 107-115.	2.2	10
124	Effect of acidity of ZSM-5 zeolite on conversion of ethanol to propylene. Applied Catalysis A: General, 2011, 399, 262-267.	2.2	66
125	FAU–LEV interzeolite conversion in fluoride media. Microporous and Mesoporous Materials, 2011, 138, 32-39.	2.2	29
126	Influence of seeding on FAU–â^—BEA interzeolite conversions. Microporous and Mesoporous Materials, 2011, 142, 161-167.	2.2	64

#	Article	IF	CITATIONS
127	Influence of starting zeolite on synthesis of RUT type zeolite by interzeolite conversion method. Journal of Crystal Growth, 2011, 314, 274-278.	0.7	21
128	Synthesis of high-silica offretite by the interzeolite conversion method. Materials Research Bulletin, 2010, 45, 646-650.	2.7	42
129	Conversion of ethanol to propylene over HZSM-5 type zeolites containing alkaline earth metals. Applied Catalysis A: General, 2010, 383, 89-95.	2.2	81
130	Ethylbenzene dehydrogenation over binary FeOx–MeOy/Mg(Al)O catalysts derived from hydrotalcites. Applied Catalysis A: General, 2010, 390, 225-234.	2.2	37
131	Synthesis of single phase Ca-α-SiAlON using Y-type zeolite. Journal of the European Ceramic Society, 2010, 30, 1537-1541.	2.8	6
132	Mesoporous silicas containing carboxylic acid: Preparation, thermal degradation, and catalytic performance. Applied Catalysis A: General, 2010, 372, 82-89.	2.2	8
133	Preparation of Ti incorporated Y zeolites by a post-synthesis method under acidic conditions and their catalytic properties. Applied Catalysis A: General, 2010, 388, 256-261.	2.2	23
134	Direct observation of surface structure of mesoporous silica with low acceleration voltage FE-SEM. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 357, 11-16.	2.3	31
135	Structural transformations of lamellar assembly of polysilsesquioxane nanosheets and arsenate adsorptions on transformed variants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 360, 159-166.	2.3	2
136	Control of spacing between aminoalkyl functions by mesostructural transition in a polysilsesquioxane lamellar assembly. Journal of Materials Chemistry, 2010, 20, 2024.	6.7	11
137	Processing of ethanol fermentation broths by <i>Candida krusei</i> to separate bioethanol by pervaporation using silicone rubberâ€coated silicalite membranes. Journal of Chemical Technology and Biotechnology, 2009, 84, 1172-1177.	1.6	13
138	Hydrothermal conversion of FAU zeolite into aluminous MTN zeolite. Journal of Porous Materials, 2009, 16, 465-471.	1.3	37
139	Structural conversion of crystalline layered silicate magadiite to microporous material by acetic acid intercalation. Journal of Porous Materials, 2009, 16, 641-649.	1.3	10
140	Photocatalytic decomposition of 2-propanol in air by mechanical mixtures of TiO2 crystalline particles and silicalite adsorbent: The complete conversion of organic molecules strongly adsorbed within zeolitic channels. Microporous and Mesoporous Materials, 2009, 117, 350-355.	2.2	27
141	Synthesis of LEV zeolite by interzeolite conversion method and its catalytic performance in ethanol to olefins reaction. Microporous and Mesoporous Materials, 2009, 122, 149-154.	2.2	101
142	Facile preparation of SBA-15-supported niobic acid (Nb2O5·nH2O) catalyst and its catalytic activity. Applied Catalysis A: General, 2009, 365, 261-267.	2.2	24
143	Citrate or hydrotalcite?. Applied Catalysis A: General, 2009, 356, 231-242.	2.2	14
144	"Green―preparation of "intelligent―Pt-doped Ni/Mg(Al)O catalysts for daily start-up and shut-down CH4 steam reforming. Applied Catalysis A: General, 2009, 363, 169-179.	2.2	18

#	Article	IF	CITATIONS
145	Sustainable Ru-doped Ni catalyst derived from hydrotalcite in propane reforming. Applied Clay Science, 2009, 43, 49-56.	2.6	27
146	Effective MgO surface doping of Cu/Zn/Al oxides as water–gas shift catalysts. Applied Clay Science, 2009, 44, 211-217.	2.6	32
147	Preparation of "intelligent―Pt/Ni/Mg(Al)O catalysts starting from commercial Mg–Al LDHs for daily start-up and shut-down steam reforming of methane. Applied Clay Science, 2009, 45, 147-154.	2.6	21
148	Amino acid containing amorphous calcium phosphates and the rapid transformation into apatite. Journal of Materials Chemistry, 2009, 19, 4906.	6.7	51
149	Structure of Lamellar Polysiloxane Induced by Interaction between Carboxylate (Alkanoate and) Tj ETQq1 1 0.784 Chemical Society of Japan, 2009, 82, 1313-1321.	314 rgBT 2.0	Overlock 1 6
150	Understanding of the Formation of Mesostructured Alkylammonium-Alkaline Earth Metal Phosphates Composed of Ionic Frameworks. Journal of Nanoscience and Nanotechnology, 2009, 9, 627-633.	0.9	4
151	Synthesis of lamellar mesostructured calcium phosphates using n-alkylamines as structure-directing agents in alcohol/water mixed solvent systems. Journal of Materials Science, 2008, 43, 4198-4207.	1.7	21
152	Preparation and crystal structure of RUB-18 modified for synthesis of zeolite RWR by topotactic conversion. Microporous and Mesoporous Materials, 2008, 110, 488-500.	2.2	49
153	Hydrothermal conversion of FAU zeolite into RUT zeolite in TMAOH system. Microporous and Mesoporous Materials, 2008, 113, 56-63.	2.2	50
154	Superior catalytic behavior of trace Pt-doped Ni/Mg(Al)O in methane reforming under daily start-up and shut-down operation. Applied Catalysis A: General, 2008, 350, 225-236.	2.2	41
155	Effects of noble metal-doping on Cu/ZnO/Al2O3 catalysts for water–gas shift reaction. Applied Catalysis A: General, 2008, 337, 48-57.	2.2	94
156	Effects of structure-directing agents on hydrothermal conversion of FAU type zeolite. Studies in Surface Science and Catalysis, 2008, 174, 229-232.	1.5	5
157	An Insight into the Process Involved in Hydrothermal Conversion of FAU to *BEA Zeolite. Chemistry of Materials, 2008, 20, 4135-4141.	3.2	73
158	Templating Route for Mesostructured Calcium Phosphates with Carboxylic Acid- and Amine-Type Surfactants. Langmuir, 2008, 24, 13113-13120.	1.6	19
159	Synthesis of High-silica CHA Zeolite from FAU Zeolite in the Presence of Benzyltrimethylammonium Hydroxide. Chemistry Letters, 2008, 37, 908-909.	0.7	77
160	Synthesis of a lamellar mesostructured calcium phosphate using hexadecylamine as a structure-directing agent in the ethanol/water solvent system. Studies in Surface Science and Catalysis, 2007, 165, 253-256.	1.5	4
161	Synthesis of layered organosilica binding with selfassembled LB film. Studies in Surface Science and Catalysis, 2007, 165, 433-436.	1.5	0
162	Realumination of Y zeolite in ammonium salt solution. Studies in Surface Science and Catalysis, 2007, , 604-609.	1.5	0

#	Article	IF	CITATIONS
163	Convenient conversion of crystalline layered silicate octosilicate into RWR-type zeolite by acetic acid intercalation. New Journal of Chemistry, 2007, 31, 593.	1.4	37
164	Polymerisation of aminopropyltrialkoxysilane in the presence of carboxylate: a new layered organosilica mesocomposite built up using intermolecular interactions with LB film-type self-assembly. Journal of Materials Chemistry, 2007, 17, 1372.	6.7	22
165	Estimation of spacing between 3-bromopropyl functions grafted on mesoporous silica surfaces by a substitution reaction using diamine probe molecules. Journal of Materials Chemistry, 2007, 17, 3901.	6.7	23
166	Promoting effect of Ru on Ni/Mg(Al)O catalysts in DSS-like operation of CH4 steam reforming. Catalysis Communications, 2007, 8, 447-451.	1.6	46
167	Stabilized production of highly concentrated bioethanol from fermentation broths by <i>Zymomonas mobilis</i> by pervaporation using silicone rubberâ€coated silicalite membranes. Journal of Chemical Technology and Biotechnology, 2007, 82, 745-751.	1.6	18
168	Partial oxidation of propane to synthesis gas over noble metals-promoted Ni/Mg(Al)O catalysts—High activity of Ru–Ni/Mg(Al)O catalyst. Applied Catalysis A: General, 2007, 318, 143-154.	2.2	41
169	Self-activation and self-regenerative activity of trace Rh-doped Ni/Mg(Al)O catalysts in steam reforming of methane. Applied Catalysis A: General, 2007, 332, 98-109.	2.2	69
170	Partial oxidation of propane over Ru promoted Ni/Mg(Al)O catalysts. Applied Catalysis A: General, 2007, 321, 155-164.	2.2	39
171	Structural and physico-chemical properties of high-silica mordenite. Microporous and Mesoporous Materials, 2007, 101, 127-133.	2.2	19
172	Bromine addition and successive amine substitution of mesoporous ethylenesilica: Reaction, characterizations and arsenate adsorption. Microporous and Mesoporous Materials, 2007, 100, 328-339.	2.2	31
173	Catalytic behavior of ternary Cu/ZnO/Al2O3 systems prepared by homogeneous precipitation in water-gas shift reaction. Journal of Molecular Catalysis A, 2007, 275, 130-138.	4.8	70
174	Self-regenerative activity of Ni/Mg(Al)O catalysts with trace Ru during daily start-up and shut-down operation of CH4 steam reforming. Journal of Catalysis, 2007, 250, 299-312.	3.1	108
175	Alkaline-mediated mesoporous mordenite zeolites for acid-catalyzed conversionsâ~†. Journal of Catalysis, 2007, 251, 21-27.	3.1	211
176	Role of ammonium fluoride in crystallization process of beta zeolite. Journal of Crystal Growth, 2007, 307, 177-184.	0.7	17
177	Steam reforming of CH4 over Ni-Ru catalysts supported on Mg-Al mixed oxide. Topics in Catalysis, 2007, 42-43, 471-474.	1.3	19
178	Realumination of zeolite Y under acidic conditions. Journal of Porous Materials, 2007, 14, 19-26.	1.3	10
179	Aluminum distribution in high-silica mordenite. Journal of Porous Materials, 2007, 14, 89-96.	1.3	17
180	Memory effect-enhanced catalytic ozonation of aqueous phenol and oxalic acid over supported Cu catalysts derived from hydrotalcite. Applied Clay Science, 2006, 33, 247-259.	2.6	40

#	Article	IF	CITATIONS
181	Solubility and Crystallization-controlled Synthesis of Lamellar Mesostructured Calcium Phosphate in the Ethanol/Water System. Chemistry Letters, 2006, 35, 948-949.	0.7	10
182	Novel Inorganic–Organic Layered Composite Synthesized by Polycondensation of 3-Aminopropyltriethoxysilane Associated with the Self-assembly of Alkanoate. Chemistry Letters, 2006, 35, 1198-1199.	0.7	3
183	Hydrothermal conversion of FAU into â^—BEA zeolites. Microporous and Mesoporous Materials, 2006, 96, 72-78.	2.2	88
184	Improved Fe/Mg-Al hydrotalcite catalyst for Baeyer–Villiger oxidation of ketones with molecular oxygen and benzaldehyde. Journal of Molecular Catalysis A, 2006, 253, 279-289.	4.8	69
185	Water-gas shift reaction over Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation. Applied Catalysis A: General, 2006, 303, 62-71.	2.2	152
186	Promoting effect of Rh, Pd and Pt noble metals to the Ni/Mg(Al)O catalysts for the DSS-like operation in CH4 steam reforming. Applied Catalysis A: General, 2006, 310, 97-104.	2.2	71
187	Convenient synthesis of large mordenite crystals. Journal of Crystal Growth, 2006, 291, 521-526.	0.7	18
188	Synthesis and thermal stability of beta zeolite using ammonium fluoride. Microporous and Mesoporous Materials, 2006, 89, 88-95.	2.2	45
189	Control of crystal size of high-silica mordenite by quenching in the course of crystallization process. Microporous and Mesoporous Materials, 2006, 95, 141-145.	2.2	19
190	Synthesis and characterization of large beta zeolite crystals using ammonium fluoride. Journal of Materials Science, 2006, 41, 1861-1864.	1.7	13
191	Sustainability of Ni loaded Mg–Al mixed oxide catalyst in daily startup and shutdown operations of CH4 steam reforming. Applied Catalysis A: General, 2006, 308, 194-203.	2.2	42
192	Steam reforming of dimethyl ether over ZSM-5 coupled with Cu/ZnO/Al2O3 catalyst prepared by homogeneous precipitation. Applied Catalysis A: General, 2006, 308, 82-90.	2.2	95
193	Cu/Zn-based catalysts improved by adding magnesium for water–gas shift reaction. Journal of Molecular Catalysis A, 2006, 253, 270-278.	4.8	55
194	Supported hybrid catalysts based on zirconocene and tris(pyrazolyl)borate titanium derivatives. Journal of Applied Polymer Science, 2006, 99, 2002-2009.	1.3	6
195	Preparation and Characterization of Al-CDS-1 Zeolite. Journal of the Ceramic Society of Japan, 2005, 113, 424-428.	1.3	7
196	Standardization of catalyst preparation using reference catalyst: ion exchange of mordenite type zeolite. Applied Catalysis A: General, 2005, 283, 63-74.	2.2	16
197	Synthesis of aluminophosphate molecular sieves with AFI topology substituted by alkaline earth metal and their application to solid acid catalysis. Microporous and Mesoporous Materials, 2005, 81, 289-303.	2.2	29
198	Effect of ammonium salts on hydrothermal synthesis of high-silica mordenite. Microporous and Mesoporous Materials, 2005, 81, 365-374.	2.2	22

#	Article	IF	CITATIONS
199	Standardization of catalyst preparation using reference catalyst: ion exchange of mordenite type zeolite. Applied Catalysis A: General, 2005, 283, 75-84.	2.2	16
200	Stabilization of bioethanol recovery with silicone rubber-coated ethanol-permselective silicalite membranes by controlling the pH of acidic feed solution. Journal of Chemical Technology and Biotechnology, 2005, 80, 381-387.	1.6	20
201	Mesoporous silica as nanoreactor for olefin polymerization. Catalysis Surveys From Asia, 2004, 8, 295-304.	1.0	22
202	Reliable production of highly concentrated bioethanol by a conjunction of pervaporation using a silicone rubber sheet-covered silicalite membrane with adsorption process. Journal of Chemical Technology and Biotechnology, 2004, 79, 896-901.	1.6	19
203	Effect of Aluminum Source on Hydrothermal Synthesis of High-Silica Mordenite in Fluoride Medium, and Its Thermal Stability ChemInform, 2004, 35, no.	0.1	1
204	Direct synthesis of high-silica mordenite using seed crystals. Microporous and Mesoporous Materials, 2004, 76, 1-7.	2.2	56
205	Dependence of the diffusion coefficients of methane in silicalite on diffusion distance as investigated by 1H PFG NMR. Chemical Physics Letters, 2004, 393, 87-91.	1.2	26
206	Nanoacorns:  Anisotropically Phase-Segregated CoPd Sulfide Nanoparticles. Journal of the American Chemical Society, 2004, 126, 9914-9915.	6.6	171
207	Effect of Aluminum Source on Hydrothermal Synthesis of High-Silica Mordenite in Fluoride Medium, and It's Thermal Stability. Chemistry of Materials, 2004, 16, 286-291.	3.2	34
208	Syntheses of the Novel Acidic and Basic Ligands and Superlattice Formation from Gold Nanoparticles through Interparticle Acid–Base Interaction. Bulletin of the Chemical Society of Japan, 2004, 77, 1589-1597.	2.0	12
209	Novel Synthesis of FePt Nanoparticles and Magnetic Properties of Their Self-assembled Superlattices. Chemistry Letters, 2004, 33, 130-131.	0.7	59
210	Effect of NaF Addition on Hydrothermal Synthesis of High-Silica Mordenite. Journal of the Ceramic Society of Japan, 2004, 112, 332-337.	1.3	1
211	Effect of the framework structure on the dealumination–realumination behavior of zeolite. Materials Chemistry and Physics, 2003, 78, 551-557.	2.0	25
212	Drastic improvement of bioethanol recovery using a pervaporation separation technique employing a silicone rubber-coated silicalite membrane. Journal of Chemical Technology and Biotechnology, 2003, 78, 1006-1010.	1.6	60
213	Co-incorporation of Al and Ga into BEA zeolite by the pH control method. Microporous and Mesoporous Materials, 2003, 66, 109-116.	2.2	13
214	Growth behaviors of AFI type crystals. Microporous and Mesoporous Materials, 2003, 64, 145-153.	2.2	19
215	Preparation and characterization of polypropylene/mesoporous silica nanocomposites with confined polypropylene. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 3324-3332.	2.4	33
216	Stepwise polymerization of propylene and ethylene with Cr(acetylacetonate)3/MgCl2-ethylbenzoate/diethylaluminium chloride catalyst system. Polymer International, 2003, 52, 29-34.	1.6	6

#	Article	IF	CITATIONS
217	Formation of Low-Symmetric 2D Superlattices of Gold Nanoparticles through Surface Modification by Acidâ~'Base Interaction. Journal of the American Chemical Society, 2003, 125, 8708-8709.	6.6	62
218	Direct hydrothermal synthesis and stabilization of high-silica mordenite (Siâ^¶Al = 25) using tetraethylammonium and fluoride ions. Journal of Materials Chemistry, 2003, 13, 1173-1179.	6.7	36
219	Influences of aliphatic alcohols on crystallization of large mordenite crystals and their sorption properties. Journal of Materials Chemistry, 2003, 13, 181-185.	6.7	30
220	Isospecific polymerization of propylene with Metal-MCM-41. Studies in Surface Science and Catalysis, 2003, 146, 753-756.	1.5	3
221	Polymerization of 1,5-Hexadiene with (CH3)2Si(Fluorenyl)2ZrCl2-MAO Catalyst. Kobunshi Ronbunshu, 2003, 60, 365-368.	0.2	0
222	Synthesis and Characterization of Mesoporous Silica Fibers. Journal of the Ceramic Society of Japan, 2003, 111, 502-508.	1.3	1
223	The modeling of wall structure of siliceous MCM-41 based on the formation process. Studies in Surface Science and Catalysis, 2002, , 69-76.	1.5	7
224	Recent Developments in Transition Metal-Catalyzed Polymerization I. Polymerization Behavior of Propylene with Titanium Diamide Catalysts Kobunshi Ronbunshu, 2002, 59, 150-157.	0.2	0
225	Characterization of MAO-modified silicas. Journal of Molecular Catalysis A, 2002, 185, 223-235.	4.8	32
226	Improvement of ethanol selectivity of silicalite membrane in pervaporation by silicone rubber coating. Journal of Membrane Science, 2002, 210, 433-437.	4.1	92
227	Preparation of the silicalite membranes using a seeding technique under various hydrothermal conditions. Desalination, 2002, 144, 47-52.	4.0	12
228	Concentration of fermented ethanol by pervaporation using silicalite membranes coated with silicone rubber. Desalination, 2002, 149, 49-54.	4.0	63
229	Mesoporous materials prepared using coal fly ash as the silicon and aluminium source. Journal of Materials Chemistry, 2001, 11, 3285-3290.	6.7	150
230	Characterization of AlSBA-15 prepared by post-synthesis alumination with trimethylaluminium. Journal of Materials Chemistry, 2001, 11, 1111-1115.	6.7	75
231	Characterization and Catalytic Activities of Faujasites Synthesized by Using Coal Fly Ash Journal of the Ceramic Society of Japan, 2001, 109, 968-973.	1.3	18
232	Effects of Al/Zr ratio on ethylene–propylene copolymerization with supported-zirconocene catalysts. Journal of Molecular Catalysis A, 2001, 169, 275-287.	4.8	47
233	Indenyl-silica xerogels: new materials for supporting metallocene catalysts. Applied Catalysis A: General, 2001, 220, 287-302.	2.2	25
234	Synthesis of Isotactic Poly(propylene) by Titanium Based Catalysts Containing Diamide Ligands. Macromolecular Chemistry and Physics, 2001, 202, 482-487.	1.1	17

#	Article	IF	CITATIONS
235	Synthesis of Terminally Functionalized Isotactic Poly(propylene) with a [ArN(CH2)3NAr]TiCl2 (Ar =) Tj ETQq1 1 ().784314	rgBT /Overloc
236	Isospecific Propylene Polymerization Using the [ArN(CH2)3NAr]TiCl2/Al(iBu)3/Ph3CB(C6F5)4 Catalyst System in the Presence of Cyclohexene. Macromolecular Chemistry and Physics, 2001, 202, 3279-3283.	1.1	14
237	Effective activation of metallocene catalyst with AlMCM-41 in propylene polymerization. Catalysis Letters, 2001, 71, 105-110.	1.4	16
238	Synthesis of 1,4-Dioxan-2-one from 1,3-Dioxolane and Carbon Monoxide over Cation-exchange Resin Catalyst Sekiyu Gakkaishi (Journal of the Japan Petroleum Institute), 2001, 44, 131-134.	0.1	1
239	Influence of Silica Source on Zeolite Synthesis in the Presence of 1-Butanol Nippon Kagaku Kaishi / Chemical Society of Japan - Chemistry and Industrial Chemistry Journal, 2000, 2000, 733-737.	0.1	0
240	Synthesis of functionalized alternating olefin copolymer and modification to graft copolymer by hydrosilylation. Journal of Polymer Science Part A, 2000, 38, 1844-1847.	2.5	31
241	Poly(4-vinylpyridine)-supported cationic bis(cyclopentadienyl)zirconocene catalyst: Development of a new simple method to prepare polymer-supported cationic zirconocene and its application to ethylene polymerization. Macromolecular Rapid Communications, 2000, 21, 675-679.	2.0	20
242	Effective activation of metallocene catalysts with supported-type Ph3CClO4 in ethylene polymerization. Macromolecular Rapid Communications, 2000, 21, 775-778.	2.0	5
243	Ethylene and propylene polymerizations with the MgCl2-supported tris(acetylacetonato)chromium-diethylaluminium chloride catalyst system. Macromolecular Chemistry and Physics, 2000, 201, 1605-1609.	1.1	12
244	Synthesis of ethylene-α-olefin alternating copolymers with Et(1-Ind)(9-Flu)ZrCl2-MAO catalyst system. Macromolecular Chemistry and Physics, 2000, 201, 1748-1752.	1.1	26
245	Development of novel MgCl2 supported catalyst with trivalent titanocene complex of CP2TiCl2AlCl2 for propylene polymerization. Journal of Polymer Science Part A, 2000, 38, 3355-3359.	2.5	2
246	Methylaluminoxane as a New Catalyst for Alternating Copolymerization between 1,3-Butadiene and Methyl Methacrylate. Macromolecules, 2000, 33, 6907-6909.	2.2	6
247	Title is missing!. Biotechnology Letters, 1999, 21, 1037-1041.	1.1	34
248	Polymerization of propene over the MgCl2-supported tris(acetylacetonato) chromium catalyst combined with diethylaluminiumchloride. Journal of Polymer Science Part A, 1999, 37, 691-694.	2.5	9
249	Synthesis of metallocene catalysts supported on poly[p-(silylene)phenylene] derivatives for the application to olefin polymerizations. Macromolecular Chemistry and Physics, 1999, 200, 1897-1902.	1.1	9
250	Adsorptive separation of methylalumoxane by mesoporous molecular sieve MCM-41. Chemical Communications, 1999, , 733-734.	2.2	36
251	Carbonylation of Formaldehyde with Carbon Monoxide over Cation-Exchange Resin Catalysts. Bulletin of the Chemical Society of Japan, 1999, 72, 1935-1940.	2.0	8
252	Influence of Structure-directing Agent on Zeolite Synthesis Nippon Kagaku Kaishi / Chemical Society of Japan - Chemistry and Industrial Chemistry Journal, 1999, 1999, 487-491.	0.1	3

#	Article	IF	CITATIONS
253	Effect of Solvent Diols and Ligands on the Properties of Sol-Gel Alumina-Silicas. Journal of Sol-Gel Science and Technology, 1998, 13, 1027-1031.	1.1	11
254	Ethene-propene copolymerization with the MgCl2-supported dichlorobis(4,4,4-trifluoro-1-phenyl-) Tj ETQq0 0 0 Science Part A, 1998, 36, 2735-2740.	rgBT /Ove 2.5	rlock 10 Tf 50 6
255	Alternating copolymerization of ethylene and propene with the [ethylene(1-indenyl)(9-fluorenyl)]zirconium dichloride-methylaluminoxane catalyst system. Macromolecular Rapid Communications, 1998, 19, 337-339.	2.0	8
256	Polymerization of propylene with the [ArN(CH2)3NAr]TiCl2 (Ar = 2,6-i Pr2C6H3) complex using R3Al/Ph3CB(C6F5)4 (R = Me, Et,iBu) as cocatalyst. Macromolecular Rapid Communications, 1998, 19, 597-600.	2.0	9
257	Synthesis of MgCl2-supported dichlorobis(4,4,4-trifluoro-1-phenyl-1,3-butanedionato)titanium catalysts with different titanium contents and their application to propene polymerization. Macromolecular Chemistry and Physics, 1998, 199, 1495-1499.	1.1	2
258	Alternating copolymerization of ethylene and propene with the [ethylene(1-indenyl)(9-fluorenyl)]zirconium dichloridemethylaluminoxane catalyst system. Macromolecular Rapid Communications, 1998, 19, 337-339.	2.0	28
259	Estimation of Proton Mobility in HZSM-5 Type Zeolite Films by Complex Impedance Method Nippon Kagaku Kaishi / Chemical Society of Japan - Chemistry and Industrial Chemistry Journal, 1997, 1997, 456-460.	0.1	Ο
260	Baeyer–Villiger Oxidation over HZSM-5 Type Zeolites. Bulletin of the Chemical Society of Japan, 1997, 70, 2567-2570.	2.0	15
261	Realumination of dealuminated HZSM-5 zeolites by acid treatment. Chemical Communications, 1997, , 1945.	2.2	10
262	Synthesis of 1,3-dioxolan-4-one from trioxane and carbon monoxide on HZSM-5 zeolite. Chemical Communications, 1997, , 1827.	2.2	10
263	Effect of organic ligands used in sol-gel process on the formation of mullite. Journal of Sol-Gel Science and Technology, 1997, 8, 101-106.	1.1	7
264	Alternating copolymerization of ethylene and 1-octene with meso-[dimethylsilylbis(2-methyl-1-indenyl)]zirconium dichloride-methylaluminoxane as catalyst system. Macromolecular Rapid Communications, 1997, 18, 883-889.	2.0	40
265	Effect of Water Vapor Pressure on Dealumination Rate of HZSM-5 Zeolite Nippon Kagaku Kaishi / Chemical Society of Japan - Chemistry and Industrial Chemistry Journal, 1996, 1996, 303-306.	0.1	3
266	Evaluation of Amount of Framework Iron(III) Ions of ZSM-5 Type Ferrisilicate by Water Vapor Adsorption Nippon Kagaku Kaishi / Chemical Society of Japan - Chemistry and Industrial Chemistry Journal, 1996, 1996, 680-686.	0.1	2
267	Structures of polyethylene and copolymers of ethylene with 1-octene and oligoethylene produced with the Cp2ZrCl2 and [(C5Me4)SiMe2N(t-Bu)]TiCl2 catalysts. Macromolecular Chemistry and Physics, 1996, 197, 4237-4251.	1.1	90
268	Studies on the Dealumination Behavior of HZSM-5 Zeolite by FT-IR and Water Vapor Adsorption. Nippon Kagaku Kaishi / Chemical Society of Japan - Chemistry and Industrial Chemistry Journal, 1996, , 617-618.	0.1	2
269	Synthesis of ZSM-5 Type Zeolites using 1-Butanol and their Properties Nippon Kagaku Kaishi / Chemical Society of Japan - Chemistry and Industrial Chemistry Journal, 1995, 1995, 606-614.	0.1	8
270	Silicalite Membrane for Separation of Acetic Acid / Water Mixture. Chemistry Letters, 1995, 24, 153-154.	0.7	23

#	Article	IF	CITATIONS
271	Synthesis of ZSM-5 Type Zeolites Under Elevated Gravity Nippon Kagaku Kaishi / Chemical Society of Japan - Chemistry and Industrial Chemistry Journal, 1995, 1995, 320-324.	0.1	2
272	Effects of Composition of Synthesis Mixture on Silicalite Crystal Growth Nippon Kagaku Kaishi / Chemical Society of Japan - Chemistry and Industrial Chemistry Journal, 1995, 1995, 615-621.	0.1	0
273	Improvement of the pervaporation performance of silicalite membranes by modification with a silane coupling reagent. Microporous Materials, 1995, 5, 179-184.	1.6	57
274	Separation of methanolrmmethyl-tert-butyl ether mixture by pervaporation using silicalite membrane. Journal of Membrane Science, 1995, 107, 193-196.	4.1	93
275	The effect of preparation methods on the properties of zirconia/silicas. Journal of Molecular Catalysis, 1994, 94, 85-96.	1.2	35
276	Separation of ethanol/water mixture by silicalite membrane on pervaporation. Journal of Membrane Science, 1994, 95, 221-228.	4.1	266
277	Effect of preparation methods on properties of amorphous alumina/silicas. Journal of Materials Chemistry, 1994, 4, 1131.	6.7	21
278	Catalytic Performance of Aluminoferrisilicates Synthesized Using 1-Butanol as a Template Nippon Kagaku Kaishi / Chemical Society of Japan - Chemistry and Industrial Chemistry Journal, 1994, , 1060-1066.	0.1	0
279	Synthesis of ZSM-5 Type Ferri-aluminosilicates Using 1-C4H9OH as a Template Agent and Production of Light Olefins from Methanol over These Zeolites Nippon Kagaku Kaishi / Chemical Society of Japan - Chemistry and Industrial Chemistry Journal, 1993, 1993, 62-68.	0.1	0
280	Separation of Ethanol/Water Mixture by Silicalite Membrane. Chemistry Letters, 1992, 21, 2413-2414.	0.7	45
281	Growth Process of ZSM-5 Zeolite Film. Bulletin of the Chemical Society of Japan, 1992, 65, 146-154.	2.0	50
282	Synthesis of SAPO-n Polycrystalline Films Nippon Kagaku Kaishi / Chemical Society of Japan - Chemistry and Industrial Chemistry Journal, 1992, 1992, 877-880.	0.1	3
283	Preparation and Activities of Iridium Catalysts Supported on Thermostable Sol-Gel Alumina for the Decomposition of Hydrazine Nippon Kagaku Kaishi / Chemical Society of Japan - Chemistry and Industrial Chemistry Journal, 1992, 1992, 910-914.	0.1	5
284	Synthesis of Light Olefins from Methanol Using ZSM-5 Type Zeolite Catalysts Sekiyu Gakkaishi (Journal of the Japan Petroleum Institute), 1992, 35, 429-440.	0.1	14
285	Materials chemistry communications. New preparation method for highly siliceous zeolite films. Journal of Materials Chemistry, 1992, 2, 141.	6.7	33
286	Special Articles on Technology and Its Characterization for Synthesis of Inorganic Materials. Synthesis of Ga-Mordenite Using Benzyltrimethylammonium Chloride Nippon Kagaku Kaishi / Chemical Society of Japan - Chemistry and Industrial Chemistry Journal, 1991, 1991, 1456-1458.	0.1	0
287	Production of light olefins from methanol using aluminoborosilicates containing calcium. Effects of crystal size of silicate and alkaline earth metal salts on catalyst life Nippon Kagaku Kaishi / Chemical Society of Japan - Chemistry and Industrial Chemistry Journal, 1990, 1990, 824-828.	0.1	2
288	Synthesis of micro-crystalline zeolite containing calcium by addition of boric acid Nippon Kagaku Kaishi / Chemical Society of Japan - Chemistry and Industrial Chemistry Journal, 1990, 1990, 636-641.	0.1	4

#	Article	IF	CITATIONS
289	The Migration of Barium into Zeolite Channels from the Outer Surfaces of Zeolite Crystals. Bulletin of the Chemical Society of Japan, 1990, 63, 1555-1557.	2.0	3
290	HZSM-5 pelletized and modified with α-Ca3(PO4)2 and HPO42â^' as a catalyst for methanol conversion. Applied Catalysis, 1989, 49, 143-163.	1.1	8
291	Dealumination of ZSM-5 zeolites by steaming Nippon Kagaku Kaishi / Chemical Society of Japan - Chemistry and Industrial Chemistry Journal, 1989, 1989, 1818-1823.	0.1	4
292	Deactivation resistance of ZSM-5-type zeolites containing alkaline earth metals used for methanol conversion. Applied Catalysis, 1988, 41, 121-135.	1.1	19
293	The Long-Term Testing of ZSM-5-Type Zeolite Containing Strontium for the High-Temperature Conversion of Methanol to Olefin. Bulletin of the Chemical Society of Japan, 1988, 61, 3383-3385.	2.0	4
294	The Steam Stability of H-ZSM-5-Type Zeolites Containing Alkaline Earth Metals. Bulletin of the Chemical Society of Japan, 1987, 60, 791-793.	2.0	14
295	Dealumination of ZSM-5 Zeolites with Water. Chemistry Letters, 1987, 16, 1421-1424.	0.7	24
296	Inhibition of Dealumination of ZSM-5 Zeolites by Alkali Metals. Chemistry Letters, 1987, 16, 1507-1510.	0.7	17
297	Effect of SiO2/Al2O3 ratio on methanol conversion to light olefins over zeolites containing alkaline earth metals Nippon Kagaku Kaishi / Chemical Society of Japan - Chemistry and Industrial Chemistry Journal, 1987, 1987, 791-796.	0.1	3
298	Hydroconversion of Benzene over ZSM-5 Zeolite. Journal of Molecular Catalysis, 1987, 40, 113-117.	1.2	21
299	Olefin hydrogenation over zeolite H-ZSM-5 Sekiyu Gakkaishi (Journal of the Japan Petroleum) Tj ETQq1 1 0.7843	814 rgBT /0 0.P	Overlock 10
300	Hydrocracking of benzene over various zeolite catalysts Sekiyu Gakkaishi (Journal of the Japan) Tj ETQq0 0 0 rgf	3T /Overloo 0.1	ck 10 Tf 50 3
301	Conversion of synthesis gas to light olefins utilizing ZSM-5 type zeolite catalysts modified with alkaline earth metals Sekiyu Gakkaishi (Journal of the Japan Petroleum Institute), 1986, 29, 174-177.	0.1	2
302	Olefin Hydrogenation over ZSM-5 Type Zeolite Catalysts Modified with Alkaline Earth Metals. Bulletin of the Chemical Society of Japan, 1985, 58, 3371-3372.	2.0	6
303	Hydrogenation of Carbon Monoxide to Form Light Olefins over an Iron-modified Crystalline Silica. Bulletin of the Chemical Society of Japan, 1985, 58, 1317-1318.	2.0	10
304	A new metal zeolite catalyst for the Fischer—Tropsch reaction. Zeolites, 1985, 5, 194-196.	0.9	10
305	THE ROLE OF ADDITIVES ON THE IMPROVEMENT OF THE ISOTACTICITY OF POLYPROPYLENE—A POSSIBLE INTERPRETATION. Chemistry Letters, 1982, 11, 425-428.	0.7	16

Polymerization of propylene over metal oxides-supported TiCl3 catalysts. Polymer Bulletin, 1980, 2, 817. 1.7 6

#	Article	IF	CITATIONS
307	Polymerization of propylene over titanium exchanged Y-zeolite. Polymer Bulletin, 1979, 1, 665.	1.7	4
308	Hydrogenation of 1, 3-Butadiene over LaCo5Nn. Nippon Kagaku Kaishi / Chemical Society of Japan - Chemistry and Industrial Chemistry Journal, 1979, 1979, 573-585.	0.1	1

TSUNEJI SANO

LaNi5H6.Oã«ã, ĩã, അയ‰æ©ŸåŒ–å•̂物ã®æ°´ç´åŒ–å•å;œ. Nippon Kagaku Kaishi / Chemical Society of Japan - Chemistry and Indust Journal, 1978, 1978, 930-934.