Longxian Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2064694/publications.pdf

Version: 2024-02-01

208 papers 6,039 citations

43 h-index 61 g-index

210 all docs

210 docs citations

times ranked

210

2207 citing authors

#	Article	IF	CITATIONS
1	Zoonotic Cryptosporidium Species and Enterocytozoon bieneusi Genotypes in HIV-Positive Patients on Antiretroviral Therapy. Journal of Clinical Microbiology, 2013, 51, 557-563.	1.8	209
2	Subtyping <i>Cryptosporidium ubiquitum, </i> a Zoonotic Pathogen Emerging in Humans. Emerging Infectious Diseases, 2014, 20, 217-224.	2.0	172
3	Genetic Polymorphism and Zoonotic Potential of <i>Enterocytozoon bieneusi</i> Primates in China. Applied and Environmental Microbiology, 2014, 80, 1893-1898.	1.4	128
4	<i>Cryptosporidium</i> spp. in Wild, Laboratory, and Pet Rodents in China: Prevalence and Molecular Characterization. Applied and Environmental Microbiology, 2009, 75, 7692-7699.	1.4	110
5	Predomination and New Genotypes of Enterocytozoon bieneusi in Captive Nonhuman Primates in Zoos in China: High Genetic Diversity and Zoonotic Significance. PLoS ONE, 2015, 10, e0117991.	1.1	104
6	Genetic Diversity in Enterocytozoon bieneusi Isolates from Dogs and Cats in China: Host Specificity and Public Health Implications. Journal of Clinical Microbiology, 2014, 52, 3297-3302.	1.8	103
7	Characteristics of Cryptosporidium Transmission in Preweaned Dairy Cattle in Henan, China. Journal of Clinical Microbiology, 2011, 49, 1077-1082.	1.8	102
8	Cryptosporidium tyzzeri n. sp. (Apicomplexa: Cryptosporidiidae) in domestic mice (Mus musculus). Experimental Parasitology, 2012, 130, 274-281.	0.5	88
9	Prevalence and molecular characterization of Cryptosporidium spp. and Giardia duodenalisin dairy cattle in Ningxia, northwestern China. BMC Veterinary Research, 2014, 10, 292.	0.7	88
10	Cryptosporidium spp. in pet birds: Genetic diversity and potential public health significance. Experimental Parasitology, 2011, 128, 336-340.	0.5	82
11	Molecular Characterization of <i>Cryptosporidium</i> spp., <i>Giardia duodenalis</i> , and <i>Enterocytozoon bieneusi</i> in Captive Wildlife at Zhengzhou Zoo, China. Journal of Eukaryotic Microbiology, 2015, 62, 833-839.	0.8	74
12	Genetic characterizations of Cryptosporidium spp. and Giardia duodenalis in humans in Henan, China. Experimental Parasitology, 2011, 127, 42-45.	0.5	70
13	Extended Outbreak of Cryptosporidiosis in a Pediatric Hospital, China. Emerging Infectious Diseases, 2012, 18, 312-314.	2.0	70
14	Distribution and Genetic Characterizations of Cryptosporidium spp. in Pre-Weaned Dairy Calves in Northeastern China's Heilongjiang Province. PLoS ONE, 2013, 8, e54857.	1.1	69
15	Giardia duodenalis Infections in Humans and Other Animals in China. Frontiers in Microbiology, 2017, 8, 2004.	1.5	64
16	Evolution of mitosome metabolism and invasion-related proteins in Cryptosporidium. BMC Genomics, 2016, 17, 1006.	1.2	63
17	Molecular survey of Enterocytozoon bieneusi in sheep and goats in China. Parasites and Vectors, 2016, 9, 23.	1.0	62
18	Cryptosporidiosis caused by Cryptosporidium parvum subtype IIdA15G1 at a dairy farm in Northwestern China. Parasites and Vectors, 2014, 7, 529.	1.0	61

#	Article	IF	CITATIONS
19	Multilocus Genotyping of Giardia duodenalis in Dairy Cattle in Henan, China. PLoS ONE, 2014, 9, e100453.	1.1	61
20	Cervine genotype is the major Cryptosporidium genotype in sheep in China. Parasitology Research, 2010, 106, 341-347.	0.6	60
21	Development of a Multilocus Sequence Tool for Typing <i>Cryptosporidium muris</i> and <i>Cryptosporidium andersoni</i> Journal of Clinical Microbiology, 2011, 49, 34-41.	1.8	60
22	Occurrence, molecular characterization and predominant genotypes of Enterocytozoon bieneusi in dairy cattle in Henan and Ningxia, China. Parasites and Vectors, 2016, 9, 142.	1.0	59
23	Detection of human intestinal protozoan parasites in vegetables and fruits: a review. Parasites and Vectors, 2020, 13, 380.	1.0	59
24	<i>Enterocytozoon bieneusi</i> in Dairy Cattle in the Northeast of China: Genetic Diversity of <scp>ITS</scp> Gene and Evaluation of Zoonotic Transmission Potential. Journal of Eukaryotic Microbiology, 2015, 62, 553-560.	0.8	58
25	Cryptosporidium parvum IId family: clonal population and dispersal from Western Asia to other geographical regions. Scientific Reports, 2014, 4, 4208.	1.6	58
26	Comparative genomic analysis of the IId subtype family of Cryptosporidium parvum. International Journal for Parasitology, 2017, 47, 281-290.	1.3	58
27	Zoonotic and host-adapted genotypes of Cryptosporidium spp., Giardia duodenalis and Enterocytozoon bieneusi in dairy cattle in Hebei and Tianjin, China. Veterinary Parasitology, 2017, 248, 68-73.	0.7	58
28	Genetic Characterizations of Giardia duodenalis in Sheep and Goats in Heilongjiang Province, China and Possibility of Zoonotic Transmission. PLoS Neglected Tropical Diseases, 2012, 6, e1826.	1.3	56
29	Zoonotic Cryptosporidium spp. and Enterocytozoon bieneusi in pet chinchillas (Chinchilla lanigera) in China. Parasitology International, 2015, 64, 339-341.	0.6	56
30	Prevalence of Enterocytozoon bieneusi and genetic diversity of ITS genotypes in sheep and goats in China. Infection, Genetics and Evolution, 2015, 32, 265-270.	1.0	55
31	Cryptosporidium andersoni is the predominant species in post-weaned and adult dairy cattle in China. Parasitology International, 2011, 60, 1-4.	0.6	53
32	Large-scale survey of <i>Cryptosporidium </i> spp. in chickens and Pekin ducks (<i>Anas) Tj ETQq0 0 0 rgBT /Overlo</i>	ock 10 Tf : 0.8	50 227 Td (p 52
33	Multilocus typing of Cryptosporidium spp. and Giardia duodenalis from non-human primates in China. International Journal for Parasitology, 2014, 44, 1039-1047.	1.3	51
34	Prevalence and distribution of Cryptosporidium spp. in dairy cattle in Heilongjiang Province, China. Parasitology Research, 2009, 105, 797-802.	0.6	48
35	Cryptosporidium cuniculus and Giardia duodenalis in Rabbits: Genetic Diversity and Possible Zoonotic Transmission. PLoS ONE, 2012, 7, e31262.	1.1	47
36	<i>Enterocytozoon bieneusi</i> Genotypes in Grazing Horses in China and their Zoonotic Transmission Potential. Journal of Eukaryotic Microbiology, 2016, 63, 591-597.	0.8	47

#	Article	IF	Citations
37	Potential impacts of host specificity on zoonotic or interspecies transmission of Enterocytozoon bieneusi. Infection, Genetics and Evolution, 2019, 75, 104033.	1.0	47
38	Prevalence and molecular characterization of Cryptosporidium spp. and Giardia duodenalis in dairy cattle in Beijing, China. Veterinary Parasitology, 2016, 219, 61-65.	0.7	46
39	Detection and Phylogenetic Characterization of Anaplasma capra: An Emerging Pathogen in Sheep and Goats in China. Frontiers in Cellular and Infection Microbiology, 2018, 8, 283.	1.8	46
40	Prevalence and Molecular Characterization of <i>Cyclospora cayetanensis </i> , Henan, China. Emerging Infectious Diseases, 2011, 17, 1887-1890.	2.0	45
41	Occurrence of bovine giardiasis and endemic genetic characterization of Giardia duodenalis isolates in Heilongjiang Province, in the Northeast of China. Parasitology Research, 2012, 111, 655-661.	0.6	45
42	Enterocytozoon bieneusi in sika deer (Cervus nippon) and red deer (Cervus elaphus): deer specificity and zoonotic potential of ITS genotypes. Parasitology Research, 2014, 113, 4243-4250.	0.6	45
43	Advances and Perspectives on the Epidemiology of Bovine Cryptosporidium in China in the Past 30 Years. Frontiers in Microbiology, 2017, 8, 1823.	1.5	45
44	Prevalence and molecular identification of Cryptosporidium spp. in pigs in Henan, China. Parasitology Research, 2010, 107, 1489-1494.	0.6	44
45	Genotyping of Enterocytozoon bieneusi (Microsporidia) isolated from various birds in China. Infection, Genetics and Evolution, 2016, 40, 151-154.	1.0	44
46	Molecular characterization of Cryptosporidium spp. and Giardia duodenalis from yaks in the central western region of China. BMC Microbiology, 2015, 15, 108.	1.3	43
47	Multilocus sequence typing of Enterocytozoon bieneusi in nonhuman primates in China. Veterinary Parasitology, 2014, 200, 13-23.	0.7	42
48	Comparative genomics reveals Cyclospora cayetanensis possesses coccidia-like metabolism and invasion components but unique surface antigens. BMC Genomics, 2016, 17, 316.	1.2	42
49	Genetic similarities between Cyclospora cayetanensis and cecum-infecting avian Eimeria spp. in apicoplast and mitochondrial genomes. Parasites and Vectors, 2015, 8, 358.	1.0	40
50	Zoonotic Enterocytozoon bieneusi genotypes in Pere David's deer (Elaphurus davidianus) in Henan, China. Experimental Parasitology, 2015, 155, 46-48.	0.5	40
51	First molecular characterization of enteric protozoa and the human pathogenic microsporidian, Enterocytozoon bieneusi, in captive snakes in China. Parasitology Research, 2014, 113, 3041-3048.	0.6	39
52	Occurrence and molecular identification of Cryptosporidium spp. in dairy calves in Xinjiang, Northwestern China. Veterinary Parasitology, 2015, 212, 404-407.	0.7	39
53	Molecular epidemiology, evolution, and phylogeny of Entamoeba spp Infection, Genetics and Evolution, 2019, 75, 104018.	1.0	39
54	Multilocus Sequence Typing Tool for <i>Cyclospora cayetanensis</i> . Emerging Infectious Diseases, 2016, 22, 1464-1467.	2.0	38

#	Article	IF	CITATIONS
55	High prevalence of Enterocytozoon bieneusi zoonotic genotype D in captive golden snub-nosed monkey (Rhinopithecus roxellanae) in zoos in China. BMC Veterinary Research, 2017, 13, 158.	0.7	38
56	<i>Cyclospora cayetanensis</i> infection in humans: biological characteristics, clinical features, epidemiology, detection method and treatment. Parasitology, 2020, 147, 160-170.	0.7	38
57	Cryptosporidium spp. in quails (Coturnix coturnix japonica) in Henan, China: Molecular characterization and public health significance. Veterinary Parasitology, 2012, 187, 534-537.	0.7	37
58	Multi-locus analysis of Giardia duodenalis from nonhuman primates kept in zoos in China: Geographical segregation and host-adaptation of assemblage B isolates. Infection, Genetics and Evolution, 2015, 30, 82-88.	1.0	37
59	Common occurrence of Cryptosporidium hominis in horses and donkeys. Infection, Genetics and Evolution, 2016, 43, 261-266.	1.0	37
60	Molecular characterization of Cryptosporidium spp. in domestic pigeons (Columba livia domestica) in Guangdong Province, Southern China. Parasitology Research, 2015, 114, 2237-2241.	0.6	36
61	Occurrence, Molecular Characterization, and Assessment of Zoonotic Risk of <i>Cryptosporidium</i> spp., <i>Giardia duodenalis</i> , and <i>Enterocytozoon bieneusi</i> in Pigs in Henan, Central China. Journal of Eukaryotic Microbiology, 2018, 65, 893-901.	0.8	36
62	Prevalence, molecular characterization and zoonotic potential of Cryptosporidium spp. in goats in Henan and Chongqing, China. Experimental Parasitology, 2014, 142, 11-16.	0.5	35
63	Multilocus Sequence Subtyping and Genetic Structure of Cryptosporidium muris and Cryptosporidium andersoni. PLoS ONE, 2012, 7, e43782.	1.1	35
64	Genotyping of Enterocytozoon bieneusi in Farmed Blue Foxes (Alopex lagopus) and Raccoon Dogs (Nyctereutes procyonoides) in China. PLoS ONE, 2015, 10, e0142611.	1.1	33
65	Molecular characterization of the Cryptosporidium cervine genotype from a sika deer (Cervus nippon) Tj ETQq1	1 0,784314	4 rgBT /Over
66	Molecular and phylogenetic analysis of <i>Anaplasma</i> Spp. in sheep and goats from six provinces of China. Journal of Veterinary Science, 2016, 17, 523.	0.5	32
67	An investigation of parasitic infections and review of molecular characterization of the intestinal protozoa in nonhuman primates in China from 2009 to 2015. International Journal for Parasitology: Parasites and Wildlife, 2017, 6, 8-15.	0.6	32
68	Molecular characterization of three intestinal protozoans in hospitalized children with different disease backgrounds in Zhengzhou, central China. Parasites and Vectors, 2019, 12, 543.	1.0	32
69	Prevalence and Genetic Characterization of Cryptosporidium Species in Dairy Calves in Central Ethiopia. PLoS ONE, 2016, 11, e0154647.	1.1	32
70	Molecular identification of Cryptosporidium spp. and Giardia duodenalis in grazing horses from Xinjiang, China. Veterinary Parasitology, 2015, 209, 169-172.	0.7	31
71	Prevalence and genotyping of Giardia duodenalis isolated from sheep in Henan Province, central China. Infection, Genetics and Evolution, 2016, 39, 330-335.	1.0	31
72	Prevalence and multilocus genotyping of Cryptosporidium andersoni in dairy cattle and He cattle in Xinjiang, China. Infection, Genetics and Evolution, 2016, 44, 313-317.	1.0	31

#	Article	IF	Citations
73	Dominance of Enterocytozoon bieneusi genotype J in dairy calves in Xinjiang, Northwest China. Parasitology International, 2017, 66, 960-963.	0.6	31
74	Prevalence and molecular characterization of Cryptosporidium spp. and Giardia duodenalis in deer in Henan and Jilin, China. Parasites and Vectors, 2018, 11, 239.	1.0	31
75	Occurrence and molecular characterization of Cryptosporidium spp., Giardia duodenalis, and Enterocytozoon bieneusi from Tibetan sheep in Gansu, China. Infection, Genetics and Evolution, 2018, 64, 46-51.	1.0	31
76	Identification of human pathogenic Enterocytozoon bieneusi, Cyclospora cayetanensis, and Cryptosporidium parvum on the surfaces of vegetables and fruits in Henan, China. International Journal of Food Microbiology, 2019, 307, 108292.	2.1	31
77	CRISPR/Cas12a-based on-site diagnostics of Cryptosporidium parvum IId-subtype-family from human and cattle fecal samples. Parasites and Vectors, 2021, 14, 208.	1.0	31
78	Multilocus phylogenetic analysis of Cryptosporidium andersoni (Apicomplexa) isolated from a bactrian camel (Camelus bactrianus) in China. Parasitology Research, 2008, 102, 915-920.	0.6	30
79	The Potential Role of Synanthropic Rodents and Flies in the Transmission of <i>Enterocytozoon bieneusi</i> on a Dairy Cattle farm in China. Journal of Eukaryotic Microbiology, 2019, 66, 435-441.	0.8	30
80	Genetic Analysis of the Gdh and Bg Genes of Animal-Derived Giardia duodenalis Isolates in Northeastern China and Evaluation of Zoonotic Transmission Potential. PLoS ONE, 2014, 9, e95291.	1.1	30
81	Prevalence and multilocus genotyping of Giardia duodenalis in dairy calves in Xinjiang, Northwestern China. Parasites and Vectors, 2016, 9, 546.	1.0	29
82	First molecular evidence of mixed infections of Anaplasma species in dogs in Henan, China. Ticks and Tick-borne Diseases, 2017, 8, 283-289.	1.1	29
83	Molecular characterization of Blastocystis sp. in captive wildlife in Bangladesh National Zoo: Non-human primates with high prevalence and zoonotic significance. International Journal for Parasitology: Parasites and Wildlife, 2019, 10, 314-320.	0.6	29
84	Prevalence of Cryptosporidium baileyi in ostriches (Struthio camelus) in Zhengzhou, China. Veterinary Parasitology, 2011, 175, 151-154.	0.7	28
85	Occurrence and molecular characterization of Cryptosporidium in dogs in Henan Province, China. BMC Veterinary Research, 2014, 10, 26.	0.7	27
86	Multilocus genotyping of Giardia duodenalis isolates from children in Oromia Special Zone, central Ethiopia. BMC Microbiology, 2016, 16, 89.	1.3	27
87	Molecular epidemiology of <i>Cryptosporidium</i> spp. in dairy cattle in Guangdong Province, South China. Parasitology, 2019, 146, 28-32.	0.7	27
88	Prevalence and Genetic Characterizations of Cryptosporidium spp. in Pre-Weaned and Post-Weaned Piglets in Heilongjiang Province, China. PLoS ONE, 2013, 8, e67564.	1.1	26
89	Prevalence of Zoonotic <i>Giardia duodenalis</i> Assemblage B and First Identification of Assemblage E in Rabbit Fecal Samples Isolates from Central China. Journal of Eukaryotic Microbiology, 2015, 62, 810-814.	0.8	26
90	Dogs as New Hosts for the Emerging Zoonotic Pathogen Anaplasma capra in China. Frontiers in Cellular and Infection Microbiology, 2019, 9, 394.	1.8	26

#	Article	IF	Citations
91	Prevalence, Genetic Characteristics, and Zoonotic Potential of <i>Cryptosporidium</i> Causing Infections in Farm Rabbits in China. Journal of Clinical Microbiology, 2010, 48, 3263-3266.	1.8	25
92	The first report of Cryptosporidium andersoni in horses with diarrhea and multilocus subtype analysis. Parasites and Vectors, 2015, 8, 483.	1.0	25
93	Multilocus Typing of <i>Enterocytozoon bieneusi</i> in Pig Reveals the High Prevalence, Zoonotic Potential, Host Adaptation and Geographical Segregation in China. Journal of Eukaryotic Microbiology, 2019, 66, 707-718.	0.8	25
94	Multilocus genotyping of potentially zoonotic Giardia duodenalis in pet chinchillas (Chinchilla) Tj ETQq0 0 0 rgBT	Overlock	10 Tf 50 622
95	Molecular characterization of a new genotype of Cryptosporidium from American minks (Mustela) Tj ETQq1 1 0.7	'84314 rg	BT_lOverlo <mark>ck</mark>
96	Genotyping and subtyping Cryptosporidium parvum and Giardia duodenalis carried by flies on dairy farms in Henan, China. Parasites and Vectors, 2014, 7, 190.	1.0	23
97	Multilocus sequence typing and clonal population genetic structure of <i>Cyclospora cayetanensis </i> i>in humans. Parasitology, 2017, 144, 1890-1897.	0.7	23
98	Dominance of zoonotic genotype D of Enterocytozoon bieneusi in bamboo rats (Rhizomys sinensis). Infection, Genetics and Evolution, 2019, 73, 113-118.	1.0	23
99	Distribution and molecular characterization of Cryptosporidium spp., Giardia duodenalis, and Enterocytozoon bieneusi amongst grazing adult sheep in Xinjiang, China. Parasitology International, 2019, 71, 80-86.	0.6	23
100	Natural infection of Cryptosporidium muris in ostriches (Struthio camelus). Veterinary Parasitology, 2014, 205, 518-522.	0.7	22
101	First detection and genotyping of Enterocytozoon bieneusi in reindeers (Rangifer tarandus): a zoonotic potential of ITS genotypes. Parasites and Vectors, 2015, 8, 526.	1.0	22
102	Prevalence and genetic characterization of Cryptosporidium species and Giardia duodenalis in lambs in Oromia Special Zone, Central Ethiopia. BMC Veterinary Research, 2016, 13, 22.	0.7	22
103	Molecular Characterization of <i>Cryptosporidium</i> spp., <i>Giardia duodenalis</i> , and <i>Enterocytozoon bieneusi</i> in Rabbits in Xinjiang, China. Journal of Eukaryotic Microbiology, 2018, 65, 854-859.	0.8	22
104	First detection of Enterocytozoon bieneusi in whooper swans (Cygnus cygnus) in China. Parasites and Vectors, 2020, 13, 5.	1.0	22
105	<i>Toxoplasma gondii</i> and <i>Neospora caninum</i> iin Free-Range Chickens in Henan Province of China. BioMed Research International, 2016, 2016, 1-5.	0.9	21
106	Infection rate and genetic diversity of Giardia duodenalis in pet and stray dogs in Henan Province, China. Parasitology International, 2016, 65, 159-162.	0.6	21
107	Host specificity of Enterocytozoon bieneusi genotypes in Bactrian camels (Camelus bactrianus) in China. Parasites and Vectors, 2018, 11, 219.	1.0	21
108	Molecular Characterization of <i>Giardia duodenalis</i> and <i>Enterocytozoon bieneusi</i> Isolated from Tibetan Sheep and Tibetan Goats Under Natural Grazing Conditions in Tibet. Journal of Eukaryotic Microbiology, 2020, 67, 100-106.	0.8	21

#	Article	IF	CITATIONS
109	Genetic diversity of Blastocystis in kindergarten children in southern Xinjiang, China. Parasites and Vectors, 2020, 13, 15.	1.0	21
110	Advances in Cyclosporiasis Diagnosis and Therapeutic Intervention. Frontiers in Cellular and Infection Microbiology, 2020, 10, 43.	1.8	21
111	Genetic characteristics and geographic segregation of Giardia duodenalis in dairy cattle from Guangdong Province, southern China. Infection, Genetics and Evolution, 2018, 66, 95-100.	1.0	20
112	MicroRNA expression profile of HCT-8 cells in the early phase of Cryptosporidium parvum infection. BMC Genomics, 2019, 20, 37.	1.2	20
113	MLST Subtypes and Population Genetic Structure of Cryptosporidium andersoni from Dairy Cattle and Beef Cattle in Northeastern China's Heilongjiang Province. PLoS ONE, 2014, 9, e102006.	1.1	20
114	Occurrence and molecular characterization of Cryptosporidium spp., Giardia duodenalis, Enterocytozoon bieneusi, and Blastocystis sp. in captive wild animals in zoos in Henan, China. BMC Veterinary Research, 2021, 17, 332.	0.7	20
115	Seroprevalence, Isolation, Genotyping, and Pathogenicity of Toxoplasma gondii Strains from Sheep in China. Frontiers in Microbiology, 2017, 8, 136.	1.5	19
116	Molecular identification and epidemiological comparison of Cryptosporidium spp. among different pig breeds in Tibet and Henan, China. BMC Veterinary Research, 2019, 15, 101.	0.7	19
117	Multilocus genotyping of Giardia duodenalis isolates from calves in Oromia Special Zone, Central Ethiopia. Infection, Genetics and Evolution, 2016, 43, 281-288.	1.0	18
118	Molecular characterization of hemotropic mycoplasmas (Mycoplasma ovis and â€~Candidatus) Tj ETQq0 0 0 rg€	BT /Qverloo	ck 10 Tf 50 38
119	Prevalence and molecular characterization of <i>Cryptosporidium</i> spp. and <i>Giardia duodenalis</i> in dairy cattle in Gansu, northwest China. Parasite, 2020, 27, 62.	0.8	18
120	A new genotype of Cryptosporidium from giant panda (Ailuropoda melanoleuca) in China. Parasitology International, 2013, 62, 454-458.	0.6	17
121	First molecular evidence for the presence of Anaplasma DNA in milk from sheep and goats in China. Parasitology Research, 2016, 115, 2789-2795.	0.6	17
122	Diagnosis of Swine Toxoplasmosis by PCR and Genotyping of Toxoplasma gondii from pigs in Henan, Central China. BMC Veterinary Research, 2017, 13, 152.	0.7	17
123	Sarcocystis species in wild and domestic sheep (Ovis ammon and Ovis aries) from China. BMC Veterinary Research, 2018, 14, 377.	0.7	17
124	The first detection of <i>Anaplasma capra</i> , an emerging zoonotic <i>Anaplasma</i> sp., in erythrocytes. Emerging Microbes and Infections, 2021, 10, 226-234.	3.0	17
125	Genotyping and identification of Cryptosporidium spp., Giardia duodenalis and Enterocytozoon bieneusi from free–range Tibetan yellow cattle and cattle–yak in Tibet, China. Acta Tropica, 2020, 212, 105671.	0.9	16
126	Evidence for Zoonotic Potential of Enterocytozoon bieneusi in Its First Molecular Characterization in Captive Mammals at Bangladesh National Zoo. Journal of Eukaryotic Microbiology, 2020, 67, 427-435.	0.8	16

#	Article	IF	Citations
127	Review of zoonotic amebiasis: Epidemiology, clinical signs, diagnosis, treatment, prevention and control. Research in Veterinary Science, 2021, 136, 174-181.	0.9	16
128	Prevalence, molecular epidemiology, and zoonotic potential of Entamoeba spp. in nonhuman primates in China. Infection, Genetics and Evolution, 2017, 54, 216-220.	1.0	15
129	First Detection of Cryptosporidium spp. in Migratory Whooper Swans (Cygnus cygnus) in China. Microorganisms, 2020, 8, 6.	1.6	15
130	Population structure and geographical segregation of Cryptosporidium parvum IId subtypes in cattle in China. Parasites and Vectors, 2020, 13, 425.	1.0	15
131	Toxoplasma gondii in lambs of China: Heart juice serology, isolation and genotyping. International Journal of Food Microbiology, 2020, 322, 108563.	2.1	15
132	Toxoplasma gondii in four captive kangaroos (Macropus spp.) in China: Isolation of a strain of a new genotype from an eastern grey kangaroo (Macropus giganteus). International Journal for Parasitology: Parasites and Wildlife, 2019, 8, 234-239.	0.6	14
133	Protist 10,000 Genomes Project. Innovation(China), 2020, 1, 100058.	5.2	14
134	Unusual dominant genotype NIA1 of Enterocytozoon bieneusi in children in Southern Xinjiang, China. PLoS Neglected Tropical Diseases, 2020, 14, e0008293.	1.3	14
135	Chick embryo tracheal organ: A new and effective in vitro culture model for Cryptosporidium baileyi. Veterinary Parasitology, 2012, 188, 376-381.	0.7	13
136	Molecular and biochemical characterization of Eimeria tenella hexokinase. Parasitology Research, 2016, 115, 3425-3433.	0.6	13
137	Revisiting the infectivity and pathogenicity of Cryptosporidium avium provides new information on parasitic sites within the host. Parasites and Vectors, 2018, 11, 514.	1.0	13
138	Mitochondrial genome sequence variation as a useful marker for assessing genetic heterogeneity among Cyclospora cayetanensis isolates and source-tracking. Parasites and Vectors, 2019, 12, 47.	1.0	13
139	Molecular characterization and distribution of Cryptosporidium spp., Giardia duodenalis, and Enterocytozoon bieneusi from yaks in Tibet, China. BMC Veterinary Research, 2019, 15, 417.	0.7	13
140	Molecular Detection, Multilocus Genotyping, and Population Genetics of <i>Enterocytozoon bieneusi</i> in Pigs in Southeastern China. Journal of Eukaryotic Microbiology, 2020, 67, 107-114.	0.8	13
141	Development of duplex PCR for simultaneous detection of Theileria spp. and Anaplasma spp. in sheep and goats. Experimental Parasitology, 2017, 176, 1-7.	0.5	12
142	Multilocus genotyping of Giardia duodenalis isolated from patients in Egypt. Acta Tropica, 2019, 196, 66-71.	0.9	12
143	Review on parasites of wild and captive giant pandas (Ailuropoda melanoleuca): Diversity, disease and conservation impact. International Journal for Parasitology: Parasites and Wildlife, 2020, 13, 38-45.	0.6	12
144	Cryptosporidium parvum upregulates miR-942-5p expression in HCT-8 cells via TLR2/TLR4-NF-κB signaling. Parasites and Vectors, 2020, 13, 435.	1.0	12

#	Article	IF	CITATIONS
145	Public health and ecological significance of rodents in Cryptosporidium infections. One Health, 2022, 14, 100364.	1.5	12
146	An in vitro model of infection of chicken embryos by Cryptosporidium baileyi. Experimental Parasitology, 2014, 147, 41-47.	0.5	11
147	Population genetic characterization of Cyclospora cayetanensis from discrete geographical regions. Experimental Parasitology, 2018, 184, 121-127.	0.5	11
148	Host-adaptation of the rare Enterocytozoon bieneusi genotype CHN4 in Myocastor coypus (Rodentia:) Tj ETQq(0 0 0 _{1.0} gBT	/Overlock 10
149	Genetic Diversity of Cryptosporidium in Bactrian Camels (Camelus bactrianus) in Xinjiang, Northwestern China. Pathogens, 2020, 9, 946.	1.2	11
150	Genetic Diversity of Cryptosporidium parvum in Neonatal Dairy Calves in Xinjiang, China. Pathogens, 2020, 9, 692.	1.2	11
151	Cryptosporidium parvum gp40/15 Is Associated with the Parasitophorous Vacuole Membrane and Is a Potential Vaccine Target. Microorganisms, 2020, 8 , 363 .	1.6	11
152	Molecular identification and biological characterization of Cryptosporidium muris from camels (Camelus bactrianus) in China. Parasites and Vectors, 2021, 14, 365.	1.0	11
153	Cryptosporidium and cryptosporidiosis in wild birds: A One Health perspective. Parasitology Research, 2021, 120, 3035-3044.	0.6	11
154	Detection and genetic characterization of <i>Giardia duodenalis</i> in pigs from large-scale farms in Xinjiang, China. Parasite, 2019, 26, 53.	0.8	10
155	Prevalence and molecular characterization of Cryptosporidium spp. in pigs in Xinjiang, China. Acta Tropica, 2020, 209, 105551.	0.9	10
156	Occurrence, risk factors and genotypes of Enterocytozoon bieneusi in dogs and cats in Guangzhou, southern China: high genotype diversity and zoonotic concern. BMC Veterinary Research, 2020, 16, 201.	0.7	10
157	Prevalence and genotypic identification of <i>Cryptosporidium</i> in free-ranging and farm-raised donkeys (<i>Equus asinus asinus</i>) in Xinjiang, China. Parasite, 2020, 27, 45.	0.8	10
158	Molecular Characterization and Phylogenetic Analysis of Enterocytozoon bieneusi in Lambs in Oromia Special Zone, Central Ethiopia. Frontiers in Veterinary Science, 2020, 7, 6.	0.9	10
159	A canine model of experimental infection with Cryptosporidium canis. Experimental Parasitology, 2018, 195, 19-23.	0.5	9
160	Direct evidence of an extra-intestinal cycle of Toxoplasma gondii in tigers (Panthera tigris) by isolation of viable strains. Emerging Microbes and Infections, 2019, 8, 1550-1552.	3.0	9
161	Evidence of red panda as an intermediate host of Toxoplasma gondii and Sarcocystis species. International Journal for Parasitology: Parasites and Wildlife, 2019, 8, 188-191.	0.6	9
162	Isolation and characterization of Toxoplasma gondii from captive caracals (Caracal caracal). International Journal for Parasitology: Parasites and Wildlife, 2020, 13, 196-201.	0.6	9

#	Article	IF	Citations
163	Molecular Identification of <i>Cryptosporidium</i> spp., <i>Enterocytozoonbieneusi</i> , and <i>Giardiaduodenalis</i> in Captive Pet Birds in Henan Province, Central China. Journal of Eukaryotic Microbiology, 2021, 68, e12839.	0.8	9
164	Molecular detection and phylogenetic analyses of Anaplasma spp. in Haemaphysalis longicornis from goats in four provinces of China. Scientific Reports, 2021, 11, 14155.	1.6	9
165	Occurrence and subtyping of Blastocystis in coypus (Myocastor coypus) in China. Parasites and Vectors, 2022, 15, 14.	1.0	9
166	Cryptosporidium tyzzeri and Cryptosporidium pestis: Which name is valid?. Experimental Parasitology, 2012, 130, 308-309.	0.5	8
167	Molecular Detection and Genotyping of Enterocytozoon bieneusi in Racehorses in China. Frontiers in Microbiology, 2019, 10, 1920.	1.5	8
168	Rapid and sensitive detection of Anaplasma phagocytophilum using a newly developed recombinase polymerase amplification assay. Experimental Parasitology, 2019, 201, 21-25.	0.5	8
169	<i>Toxoplasma gondii</i> infection in white spoonbills (<i>Platalea leucorodia</i>) from Henan Province, China. Emerging Microbes and Infections, 2020, 9, 2619-2621.	3.0	8
170	First molecular characterization of <i>Enterocytozoon bieneusi</i> i) in children and calves in Bangladesh. Transboundary and Emerging Diseases, 2022, 69, 1999-2007.	1.3	8
171	Occurrence and molecular characterization of Cryptosporidium spp. and Giardia duodenalis among captive mammals in the Bangladesh National Zoo. Parasitology International, 2021, 84, 102414.	0.6	8
172	Molecular characterizations of <i>Giardia duodenalis</i> based on multilocus genotyping in sheep, goats, and beef cattle in Southwest Inner Mongolia, China. Parasite, 2022, 29, 33.	0.8	8
173	A Loop-Mediated Isothermal Amplification Assay Targeting 16S rRNA Gene for Rapid Detection of Anaplasma phagocytophilum Infection in Sheep and Goats. Journal of Parasitology, 2017, 103, 187.	0.3	7
174	Toxoplasma gondii and Neospora caninum in farm-reared ostriches (Struthio camelus) in China. BMC Veterinary Research, 2017, 13, 301.	0.7	7
175	Population genetic analysis suggests genetic recombination is responsible for increased zoonotic potential of Enterocytozoon bieneusi from ruminants in China. One Health, 2020, 11, 100184.	1.5	7
176	Genetic characteristics of <i>Giardia duodenalis</i> from sheep in Inner Mongolia, China. Parasite, 2020, 27, 60.	0.8	7
177	Low Prevalence of Antibodies Against Toxoplasma gondii in Chinese Populations. Frontiers in Cellular and Infection Microbiology, 2020, 10, 302.	1.8	7
178	Low prevalence of viable Toxoplasma gondii in swine from slaughter houses in the central of China. Parasitology International, 2020, 76, 102090.	0.6	7
179	A Multiplex PCR Detection Assay for the Identification of Clinically Relevant Anaplasma Species in Field Blood Samples. Frontiers in Microbiology, 2020, 11, 606.	1.5	7
180	Seasonal dynamics of Anaplasma spp. in goats in warm-temperate zone of China. Ticks and Tick-borne Diseases, 2021, 12, 101673.	1.1	7

#	Article	IF	CITATIONS
181	First report of Blastocystis infection in Pallas's squirrels (Callosciurus erythraeus) in China. Veterinary Research Communications, 2021, 45, 441-445.	0.6	7
182	First confirmed report of outbreak of theileriosis/anaplasmosis in a cattle farm in Henan, China. Acta Tropica, 2018, 177, 207-210.	0.9	7
183	Molecular Identification of a Rare Subtype of Cryptosporidium hominis in Infants in China. PLoS ONE, 2012, 7, e43682.	1.1	7
184	Prevalence of Blastocystis infection in free-range Tibetan sheep and Tibetan goats in the Qinghai-Tibetan Plateau in China. One Health, 2021, 13, 100347.	1.5	7
185	The first report of Anaplasma phagocytophilum and a novel Theileria spp. co-infection in a South African giraffe. Parasitology International, 2016, 65, 347-351.	0.6	6
186	Molecular identification of tick-borne pathogens in tickHaemaphysalis longicornis from sheep in Henan, China. Turkish Journal of Veterinary and Animal Sciences, 2017, 41, 51-55.	0.2	6
187	A rapid, simple and sensitive loop-mediated isothermal amplification method to detect Anaplasma bovis in sheep and goats samples. Parasitology International, 2018, 67, 70-73.	0.6	6
188	Occurrence and Multi-Locus Analysis of Giardia duodenalis in Coypus (Myocastor coypus) in China. Pathogens, 2021, 10, 179.	1.2	6
189	The Novel Zoonotic Pathogen, Anaplasma capra, Infects Human Erythrocytes, HL-60, and TF-1 Cells In Vitro. Pathogens, 2021, 10, 600.	1.2	6
190	Molecular identification and subtyping of Blastocystis sp. in hospital patients in Central China. European Journal of Protistology, 2021, 79, 125796.	0.5	6
191	Isolation, genotyping and pathogenicity of a <i>Toxoplasma gondii</i> strain isolated from a Serval () Tj ETQq1 1	0,784314 1.3	rgBT /Overl
192	Prevalence and Molecular Characteristics of Blastocystis sp. from Peafowl (Pavo cristatus) in China. Journal of Parasitology, 2021, 107, 790-793.	0.3	5
193	Molecular detection and genotyping of Enterocytozoon bieneusi in captive foxes in Xinxiang, Central China and its impact on gut bacterial communities. Research in Veterinary Science, 2021, 141, 138-144.	0.9	5
194	Seasonal monitoring of <i>Cryptosporidium</i> species and their genetic diversity in neonatal calves on two largeâ€scale farms in Xinjiang, China. Journal of Eukaryotic Microbiology, 2022, 69, e12878.	0.8	5
195	Effects of different inoculation routes on the parasitic sites of Cryptosporidium baileyi infection in chickens. Experimental Parasitology, 2014, 145, 152-156.	0.5	4
196	Isolation, genotyping and virulence determination of a <i>Toxoplasma gondii</i> strain from nonâ€human primate from China. Transboundary and Emerging Diseases, 2022, 69, 919-925.	1.3	4
197	Cryptosporidium parvum downregulates miR-181d in HCT-8 cells via the p50-dependent TLRs/NF-κB pathway. Veterinary Parasitology, 2022, 305, 109710.	0.7	4
198	Prevalence and multilocus analysis of Giardia duodenalis in racehorses in China. Parasitology Research, 2020, 119, 483-490.	0.6	3

#	Article	IF	CITATIONS
199	Cyclospora cayetanensis. Trends in Parasitology, 2022, 38, 419-420.	1.5	3
200	Morphological and molecular characterization of Cystoisospora yuensis n. sp. and Cystoisospora rastegaievae (Protozoa: Eimeriidae) in amur hedgehogs, Erinaceus amurensis (Schrenk, 1859). Parasitology Research, 2021, 120, 73-81.	0.6	2
201	Lower seroprevalence of Toxoplasma gondii in swine from central China after an outbreak of African swine fever. Parasite, 2021, 28, 55.	0.8	1
202	Development of a duplex PCR assay for detecting Theileria luwenshuni and Anaplasma phagocytophilum in sheep and goats. Experimental and Applied Acarology, 2021, 85, 319-330.	0.7	0
203	Unusual dominant genotype NIA1 of Enterocytozoon bieneusi in children in Southern Xinjiang, China. , 2020, 14, e0008293.		0
204	Unusual dominant genotype NIA1 of Enterocytozoon bieneusi in children in Southern Xinjiang, China. , 2020, 14, e0008293.		0
205	Unusual dominant genotype NIA1 of Enterocytozoon bieneusi in children in Southern Xinjiang, China. , 2020, 14, e0008293.		0
206	Unusual dominant genotype NIA1 of Enterocytozoon bieneusi in children in Southern Xinjiang, China. , 2020, 14, e0008293.		0
207	Unusual dominant genotype NIA1 of Enterocytozoon bieneusi in children in Southern Xinjiang, China. , 2020, 14, e0008293.		0
208	Unusual dominant genotype NIA1 of Enterocytozoon bieneusi in children in Southern Xinjiang, China., 2020, 14, e0008293.		0