List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2064584/publications.pdf Version: 2024-02-01

		5876	4870
177	31,596	81	168
papers	citations	h-index	g-index
182	182	182	28357
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Differentiation of Embryonic Stem Cells toÂClinically Relevant Populations: Lessons from Embryonic Development. Cell, 2008, 132, 661-680.	13.5	1,567
2	An early haematopoietic defect in mice lacking the transcription factor GATA-2. Nature, 1994, 371, 221-226.	13.7	1,314
3	Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature, 2008, 453, 524-528.	13.7	1,299
4	Stage-Specific Optimization of Activin/Nodal and BMP Signaling Promotes Cardiac Differentiation of Mouse and Human Pluripotent Stem Cell Lines. Cell Stem Cell, 2011, 8, 228-240.	5.2	1,034
5	Embryonic stem cell differentiation: emergence of a new era in biology and medicine. Genes and Development, 2005, 19, 1129-1155.	2.7	1,022
6	Single cell RNA sequencing of human liver reveals distinct intrahepatic macrophage populations. Nature Communications, 2018, 9, 4383.	5.8	958
7	In vitro differentiation of embryonic stem cells. Current Opinion in Cell Biology, 1995, 7, 862-869.	2.6	857
8	Biowire: a platform for maturation of human pluripotent stem cell–derived cardiomyocytes. Nature Methods, 2013, 10, 781-787.	9.0	784
9	Development of definitive endoderm from embryonic stem cells in culture. Development (Cambridge), 2004, 131, 1651-1662.	1.2	756
10	Multipotent Flk-1+ Cardiovascular Progenitor CellsÂGive Rise to the Cardiomyocyte, Endothelial, and Vascular Smooth Muscle Lineages. Developmental Cell, 2006, 11, 723-732.	3.1	674
11	Production of De Novo Cardiomyocytes: Human Pluripotent Stem Cell Differentiation and Direct Reprogramming. Cell Stem Cell, 2012, 10, 16-28.	5.2	616
12	Expression of a foreign gene in myeloid and lymphoid cells derived from multipotent haematopoietic precursors. Nature, 1985, 318, 149-154.	13.7	598
13	Haemangioblast commitment is initiated in the primitive streak of the mouse embryo. Nature, 2004, 432, 625-630.	13.7	595
14	Ductal pancreatic cancer modeling and drug screening using human pluripotent stem cell– and patient-derived tumor organoids. Nature Medicine, 2015, 21, 1364-1371.	15.2	591
15	A common precursor for primitive erythropoiesis and definitive haematopoiesis. Nature, 1997, 386, 488-493.	13.7	572
16	Dynamic and Coordinated Epigenetic Regulation of Developmental Transitions in the Cardiac Lineage. Cell, 2012, 151, 206-220.	13.5	555
17	Wnt and TGF-beta signaling are required for the induction of an in vitro model of primitive streak formation using embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16806-16811.	3.3	507
18	SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells. Nature Biotechnology, 2011, 29, 1011-1018.	9.4	500

#	Article	IF	CITATIONS
19	Biodegradable scaffold with built-in vasculature for organ-on-a-chip engineering and direct surgical anastomosis. Nature Materials, 2016, 15, 669-678.	13.3	471
20	Defined Engineered Human Myocardium With Advanced Maturation for Applications in Heart Failure Modeling and Repair. Circulation, 2017, 135, 1832-1847.	1.6	462
21	Tracking mesoderm induction and its specification to the hemangioblast during embryonic stem cell differentiation. Development (Cambridge), 2003, 130, 4217-4227.	1.2	444
22	Development of the hemangioblast defines the onset of hematopoiesis in human ES cell differentiation cultures. Blood, 2007, 109, 2679-2687.	0.6	399
23	A Platform for Generation of Chamber-Specific Cardiac Tissues and Disease Modeling. Cell, 2019, 176, 913-927.e18.	13.5	398
24	Metformin Activates an Atypical PKC-CBP Pathway to Promote Neurogenesis and Enhance Spatial Memory Formation. Cell Stem Cell, 2012, 11, 23-35.	5.2	396
25	BMP-4 is required for hepatic specification of mouse embryonic stem cell–derived definitive endoderm. Nature Biotechnology, 2006, 24, 1402-1411.	9.4	395
26	Haematopoietic stem and progenitor cells from human pluripotent stem cells. Nature, 2017, 545, 432-438.	13.7	395
27	Stage-specific signaling through TGFÎ ² family members and WNT regulates patterning and pancreatic specification of human pluripotent stem cells. Development (Cambridge), 2011, 138, 861-871.	1.2	350
28	Wnt signaling controls the specification of definitive and primitive hematopoiesis from human pluripotent stem cells. Nature Biotechnology, 2014, 32, 554-561.	9.4	348
29	T Lymphocyte Potential Marks the Emergence of Definitive Hematopoietic Progenitors in Human Pluripotent Stem Cell Differentiation Cultures. Cell Reports, 2012, 2, 1722-1735.	2.9	341
30	Generation of anterior foregut endoderm from human embryonic and induced pluripotent stem cells. Nature Biotechnology, 2011, 29, 267-272.	9.4	337
31	Human Pluripotent Stem Cell-Derived Atrial and Ventricular Cardiomyocytes Develop from Distinct Mesoderm Populations. Cell Stem Cell, 2017, 21, 179-194.e4.	5.2	329
32	A Temporal Chromatin Signature in Human Embryonic Stem Cells Identifies Regulators of Cardiac Development. Cell, 2012, 151, 221-232.	13.5	306
33	Sinoatrial node cardiomyocytes derived from human pluripotent cells function as a biological pacemaker. Nature Biotechnology, 2017, 35, 56-68.	9.4	280
34	Wnt, Activin, and BMP Signaling Regulate Distinct Stages in the Developmental Pathway from Embryonic Stem Cells to Blood. Cell Stem Cell, 2008, 2, 60-71.	5.2	275
35	Identification and targeting of the ROSA26 locus in human embryonic stem cells. Nature Biotechnology, 2007, 25, 1477-1482.	9.4	270
36	Runx1 is essential for hematopoietic commitment at the hemangioblast stage of development in vitro. Blood, 2002, 100, 458-466.	0.6	266

#	Article	IF	CITATIONS
37	Efficient Generation of NKX6-1+ Pancreatic Progenitors from Multiple Human Pluripotent Stem Cell Lines. Stem Cell Reports, 2015, 4, 591-604.	2.3	258
38	Rescue of erythroid development in gene targeted GATA–1â^' mouse embryonic stem cells. Nature Genetics, 1992, 1, 92-98.	9.4	255
39	Directed differentiation of cholangiocytes from human pluripotent stem cells. Nature Biotechnology, 2015, 33, 853-861.	9.4	254
40	Design and formulation of functional pluripotent stem cell-derived cardiac microtissues. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4698-707.	3.3	252
41	Human definitive haemogenic endothelium and arterial vascular endothelium represent distinct lineages. Nature Cell Biology, 2015, 17, 580-591.	4.6	243
42	FOXO1 is an essential regulator of pluripotency in human embryonic stem cells. Nature Cell Biology, 2011, 13, 1092-1099.	4.6	231
43	Retrovirus transfer of a bacterial gene into mouse haematopoietic progenitor cells. Nature, 1983, 305, 556-558.	13.7	226
44	The effect of cyclic stretch on maturation and 3D tissue formation of human embryonic stem cell-derived cardiomyocytes. Biomaterials, 2014, 35, 2798-2808.	5.7	222
45	Simple and High Yielding Method for Preparing Tissue Specific Extracellular Matrix Coatings for Cell Culture. PLoS ONE, 2010, 5, e13039.	1.1	217
46	Human Embryonic Stem Cell-Derived Cardiomyocytes Regenerate the Infarcted Pig Heart but Induce Ventricular Tachyarrhythmias. Stem Cell Reports, 2019, 12, 967-981.	2.3	207
47	Engraftment and Development of Human CD34+-Enriched Cells From Umbilical Cord Blood in NOD/LtSz-scid/scid Mice. Blood, 1997, 90, 85-96.	0.6	197
48	Induced pluripotent stem cells used to reveal drug actions in a long QT syndrome family with complex genetics. Journal of General Physiology, 2013, 141, 61-72.	0.9	189
49	The β-Globin LCR Is Not Necessary for an Open Chromatin Structure or Developmentally Regulated Transcription of the Native Mouse β-Globin Locus. Molecular Cell, 1998, 2, 447-455.	4.5	186
50	Generation of articular chondrocytes from human pluripotent stem cells. Nature Biotechnology, 2015, 33, 638-645.	9.4	171
51	Retinoic Acid Signaling Is Essential for Embryonic Hematopoietic Stem Cell Development. Cell, 2013, 155, 215-227.	13.5	170
52	Sequential development of hematopoietic and cardiac mesoderm during embryonic stem cell differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13170-13175.	3.3	164
53	Mechanism-Based Facilitated Maturation of Human Pluripotent Stem Cell–Derived Cardiomyocytes. Circulation: Arrhythmia and Electrophysiology, 2013, 6, 191-201.	2.1	164
54	Distinct Roles of MicroRNA-1 and -499 in Ventricular Specification and Functional Maturation of Human Embryonic Stem Cell-Derived Cardiomyocytes. PLoS ONE, 2011, 6, e27417.	1.1	153

GORDON M KELLER

#	Article	IF	CITATIONS
55	Generation of the epicardial lineage from human pluripotent stem cells. Nature Biotechnology, 2014, 32, 1026-1035.	9.4	152
56	Differential long-term and multilineage engraftment potential from subfractions of human CD34+ cord blood cells transplanted into NOD/SCID mice. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 413-418.	3.3	151
57	Generating ring-shaped engineered heart tissues from ventricular and atrial human pluripotent stem cell-derived cardiomyocytes. Nature Communications, 2020, 11, 75.	5.8	148
58	Ankrd11 Is a Chromatin Regulator Involved in Autism that Is Essential for Neural Development. Developmental Cell, 2015, 32, 31-42.	3.1	147
59	Mouse Embryonic Stem Cell–Derived Embryoid Bodies Generate Progenitors That Integrate Long Term into Renal Proximal Tubules In Vivo. Journal of the American Society of Nephrology: JASN, 2007, 18, 1709-1720.	3.0	145
60	The expression of Sox17 identifies and regulates haemogenic endothelium. Nature Cell Biology, 2013, 15, 502-510.	4.6	143
61	Development of the hematopoietic system in the mouse. Experimental Hematology, 1999, 27, 777-787.	0.2	140
62	Autonomous beating rate adaptation in human stem cell-derived cardiomyocytes. Nature Communications, 2016, 7, 10312.	5.8	140
63	Three-dimensional culture and cAMP signaling promote the maturation of human pluripotent stem cell-derived hepatocytes. Development (Cambridge), 2013, 140, 3285-3296.	1.2	138
64	Leptin Stimulates Fetal and Adult Erythroid and Myeloid Development. Blood, 1997, 89, 1507-1512.	0.6	135
65	Directed differentiation of hematopoietic precursors and functional osteoclasts from human ES and iPS cells. Blood, 2010, 115, 2769-2776.	0.6	135
66	Development and Function of Myeloid-Derived Suppressor Cells Generated From Mouse Embryonic and Hematopoietic Stem Cells. Stem Cells, 2010, 28, 620-632.	1.4	134
67	Hypoxia affects mesoderm and enhances hemangioblast specification during early development. Development (Cambridge), 2004, 131, 4623-4634.	1.2	128
68	Developmental regulation of yolk sac hematopoiesis by Krüppel-like factor 6. Blood, 2006, 107, 1357-1365.	0.6	126
69	Microfabricated perfusable cardiac biowire: a platform that mimics native cardiac bundle. Lab on A Chip, 2014, 14, 869-882.	3.1	121
70	Germ layer induction from embryonic stem cells. Experimental Hematology, 2005, 33, 955-964.	0.2	119
71	SCL/Tal-1 is essential for hematopoietic commitment of the hemangioblast but not for its development. Blood, 2005, 105, 3862-3870.	0.6	116
72	Committing Embryonic Stem Cells to Early Endocrine Pancreas In Vitro. Stem Cells, 2004, 22, 1205-1217.	1.4	113

5

#	Article	IF	CITATIONS
73	A view of human haematopoietic development from the Petri dish. Nature Reviews Molecular Cell Biology, 2017, 18, 56-67.	16.1	110
74	Human Pluripotent Stem Cell-Derived Cardiovascular Cells: From Developmental Biology to Therapeutic Applications. Cell Stem Cell, 2019, 25, 311-327.	5.2	106
75	Mechanical Stress Promotes Maturation of Human Myocardium From Pluripotent Stem Cell-Derived Progenitors. Stem Cells, 2015, 33, 2148-2157.	1.4	105
76	Specification of chondrocytes and cartilage tissues from embryonic stem cells. Development (Cambridge), 2013, 140, 2597-2610.	1.2	103
77	Human embryonic stem cells: The future is now. Nature Medicine, 1999, 5, 151-152.	15.2	100
78	Comparison of Human Embryonic Stem Cell-Derived Cardiomyocytes, Cardiovascular Progenitors, and Bone Marrow Mononuclear Cells for Cardiac Repair. Stem Cell Reports, 2015, 5, 753-762.	2.3	98
79	Parthenogenetic stem cells for tissue-engineered heart repair. Journal of Clinical Investigation, 2013, 123, 1285-1298.	3.9	96
80	Generation of mature compact ventricular cardiomyocytes from human pluripotent stem cells. Nature Communications, 2021, 12, 3155.	5.8	93
81	Generation of beta cells from human pluripotent stem cells: Potential for regenerative medicine. Seminars in Cell and Developmental Biology, 2012, 23, 701-710.	2.3	92
82	Identification of a Fetal Hematopoietic Precursor with B Cell, T Cell, and Macrophage Potential. Immunity, 1998, 9, 827-838.	6.6	85
83	Essential Gene Profiles for Human Pluripotent Stem Cells Identify Uncharacterized Genes and Substrate Dependencies. Cell Reports, 2019, 27, 599-615.e12.	2.9	85
84	Interrogating functional integration between injected pluripotent stem cell-derived cells and surrogate cardiac tissue. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3329-3334.	3.3	83
85	The in vitro production and characterization of neutrophils from embryonic stem cells. Blood, 2004, 103, 852-859.	0.6	81
86	Notch signaling respecifies the hemangioblast to a cardiac fate. Nature Biotechnology, 2008, 26, 1169-1178.	9.4	77
87	Modeling Atrial Fibrillation using Human Embryonic Stem Cell-Derived Atrial Tissue. Scientific Reports, 2017, 7, 5268.	1.6	77
88	Overexpression of HOX11 Leads to the Immortalization of Embryonic Precursors With Both Primitive and Definitive Hematopoietic Potential. Blood, 1998, 92, 877-887.	0.6	76
89	Specification of Multipotential Cardiovascular Progenitor Cells During Embryonic Stem Cell Differentiation and Embryonic Development. Trends in Cardiovascular Medicine, 2007, 17, 240-246.	2.3	75
90	Numb mediates the interaction between Wnt and Notch to modulate primitive erythropoietic specification from the hemangioblast. Development (Cambridge), 2008, 135, 3447-3458.	1.2	75

GORDON M KELLER

#	Article	IF	CITATIONS
91	Regulation of Hemangioblast Development. Annals of the New York Academy of Sciences, 2001, 938, 96-108.	1.8	72
92	Temporal specification of blood progenitors from mouse embryonic stem cells and induced pluripotent stem cells. Development (Cambridge), 2010, 137, 2829-2839.	1.2	70
93	Committing Embryonic Stem Cells to Differentiate into Thyrocyte-Like Cells in Vitro. Endocrinology, 2003, 144, 2644-2649.	1.4	68
94	Apoptosis in human glioblastoma cells produced using embryonic stem cell–derived astrocytes expressing tumor necrosis factor–related apoptosis-inducing ligand. Journal of Neurosurgery, 2006, 105, 88-95.	0.9	68
95	Directed Differentiation of Mouse Embryonic Stem Cells into Thyroid Follicular Cells. Endocrinology, 2006, 147, 3007-3015.	1.4	68
96	Haploinsufficiency of Runx1 results in the acceleration of mesodermal development and hemangioblast specification upon in vitro differentiation of ES cells. Blood, 2004, 103, 886-889.	0.6	65
97	Fetal Reprogramming and Senescence in Hypoplastic Left Heart Syndrome and in Human Pluripotent Stem Cells during Cardiac Differentiation. American Journal of Pathology, 2013, 183, 720-734.	1.9	65
98	Alternative Induced Pluripotent Stem Cell Characterization Criteria for In Vitro Applications. Cell Stem Cell, 2009, 4, 198-199.	5.2	64
99	Site-specific integration of adeno-associated virus involves partial duplication of the target locus. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7571-7576.	3.3	62
100	Hedgehog inhibits β-catenin activity in synovial joint development and osteoarthritis. Journal of Clinical Investigation, 2016, 126, 1649-1663.	3.9	62
101	The homeobox gene HEX regulates proliferation and differentiation of hemangioblasts and endothelial cells during ES cell differentiation. Blood, 2005, 105, 4590-4597.	0.6	61
102	Serial in vivo positive contrast MRI of iron oxideâ€labeled embryonic stem cellâ€derived cardiac precursor cells in a mouse model of myocardial infarction. Magnetic Resonance in Medicine, 2008, 60, 73-81.	1.9	60
103	Transplanted microvessels improve pluripotent stem cell–derived cardiomyocyte engraftment and cardiac function after infarction in rats. Science Translational Medicine, 2020, 12, .	5.8	56
104	Generation of purified stromal cell cultures that support lymphoid and myeloid precursors. Journal of Immunological Methods, 1986, 89, 37-47.	0.6	54
105	Rational bioprocess design for human pluripotent stem cell expansion and endoderm differentiation based on cellular dynamics. Biotechnology and Bioengineering, 2012, 109, 853-866.	1.7	51
106	Generation of Functional Liver Sinusoidal Endothelial Cells from Human Pluripotent Stem-Cell-Derived Venous Angioblasts. Cell Stem Cell, 2020, 27, 254-269.e9.	5.2	50
107	Defining the path to hematopoietic stem cells. Nature Biotechnology, 2013, 31, 416-418.	9.4	47
108	Modeling altered T-cell development with induced pluripotent stem cells from patients with RAG1-dependent immune deficiencies. Blood, 2016, 128, 783-793.	0.6	45

#	Article	IF	CITATIONS
109	Hematopoietic Commitment of ES Cells in Culture. Methods in Enzymology, 2003, 365, 39-59.	0.4	44
110	Tracking Mesoderm Formation and Specification to the Hemangioblast in Vitro. Trends in Cardiovascular Medicine, 2004, 14, 314-317.	2.3	44
111	An Endothelial Cell Niche Induces Hepatic Specification Through Dual Repression of Wnt and Notch Signaling. Stem Cells, 2011, 29, 217-228.	1.4	44
112	Ibrutinib Displays Atrial-Specific Toxicity in Human Stem Cell-Derived Cardiomyocytes. Stem Cell Reports, 2019, 12, 996-1006.	2.3	43
113	BMP10 Signaling Promotes the Development of Endocardial Cells from Human Pluripotent Stem Cell-Derived Cardiovascular Progenitors. Cell Stem Cell, 2021, 28, 96-111.e7.	5.2	43
114	In Vitro Matured Human Pluripotent Stem Cell–Derived Cardiomyocytes Form Grafts With Enhanced Structure and Function in Injured Hearts. Circulation, 2022, 145, 1412-1426.	1.6	42
115	Pdx1 and Ngn3 Overexpression Enhances Pancreatic Differentiation of Mouse ES Cell-Derived Endoderm Population. PLoS ONE, 2011, 6, e24058.	1.1	41
116	Biophysical properties of slow potassium channels in human embryonic stem cell derived cardiomyocytes implicate subunit stoichiometry. Journal of Physiology, 2011, 589, 6093-6104.	1.3	41
117	The homeobox gene <i>Hex</i> regulates hepatocyte differentiation from embryonic stem cell-derived endoderm. Hepatology, 2010, 51, 633-641.	3.6	40
118	Hematopoietic Commitment during Embryogenesis. Annals of the New York Academy of Sciences, 1999, 872, 9-16.	1.8	39
119	Acceleration of mesoderm development and expansion of hematopoietic progenitors in differentiating ES cells by the mouse Mix-like homeodomain transcription factor. Blood, 2006, 107, 3122-3130.	0.6	39
120	Smad1 expands the hemangioblast population within a limited developmental window. Blood, 2007, 109, 516-523.	0.6	39
121	Hematopoietic stem cells. Current Opinion in Immunology, 1992, 4, 133-139.	2.4	38
122	Generation of Monoclonal Antibodies Specific for Cell Surface Molecules Expressed on Early Mouse Endoderm. Stem Cells, 2009, 27, 2103-2113.	1.4	38
123	Primitive Erythropoiesis Is Regulated by miR-126 via Nonhematopoietic Vcam-1+ Cells. Developmental Cell, 2012, 23, 45-57.	3.1	38
124	Cardioprotective GLP-1 metabolite prevents ischemic cardiac injury by inhibiting mitochondrial trifunctional protein-1±. Journal of Clinical Investigation, 2020, 130, 1392-1404.	3.9	37
125	Evolutionarily conserved intercalated disc protein Tmem65 regulates cardiac conduction and connexin 43 function. Nature Communications, 2015, 6, 8391.	5.8	35
126	SCL interacts with VEGF to suppress apoptosis at the onset of hematopoiesis. Development (Cambridge), 2004, 131, 693-702.	1.2	34

#	Article	IF	CITATIONS
127	Serum-free differentiation of functional human coronary-like vascular smooth muscle cells from embryonic stem cells. Cardiovascular Research, 2013, 98, 125-135.	1.8	33
128	Embryonic stem cell—derived astrocytes expressing drug-inducible transgenes: differentiation and transplantion into the mouse brain. Journal of Neurosurgery, 2005, 103, 115-123.	0.9	32
129	FZD4 Marks Lateral Plate Mesoderm and Signals with NORRIN to Increase Cardiomyocyte Induction from Pluripotent Stem Cell-Derived Cardiac Progenitors. Stem Cell Reports, 2018, 10, 87-100.	2.3	32
130	Functional arrays of human pluripotent stem cell-derived cardiac microtissues. Scientific Reports, 2020, 10, 6919.	1.6	32
131	MouseMix gene is activated early during differentiation of ES and F9 stem cells and induces endoderm in frog embryos. Developmental Dynamics, 2003, 226, 446-459.	0.8	31
132	Enzymatically degradable poly(ethylene glycol) hydrogels for the 3D culture and release of human embryonic stem cell derived pancreatic precursor cell aggregates. Acta Biomaterialia, 2015, 22, 103-110.	4.1	30
133	Enhanced proapoptotic effects of tumor necrosis factor–related apoptosis-inducing ligand on temozolomide-resistant glioma cells. Journal of Neurosurgery, 2007, 106, 646-651.	0.9	28
134	Ultrasensitive and rapid quantification of rare tumorigenic stem cells in hPSC-derived cardiomyocyte populations. Science Advances, 2020, 6, eaay7629.	4.7	28
135	Transforming the Promise of Pluripotent Stem Cell-Derived Cardiomyocytes to a Therapy: Challenges and Solutions for Clinical Trials. Canadian Journal of Cardiology, 2014, 30, 1335-1349.	0.8	27
136	Expression of FcÎ ³ RIII defines distinct subpopulations of fetal liver B cell and myeloid precursors. European Journal of Immunology, 1995, 25, 2308-2317.	1.6	26
137	In vivo gene delivery by embryonic-stem-cell–derived astrocytes for malignant gliomas. Neuro-Oncology, 2009, 11, 102-108.	0.6	26
138	Micro-Arrayed Human Embryonic Stem Cells-Derived Cardiomyocytes for In Vitro Functional Assay. PLoS ONE, 2012, 7, e48483.	1.1	26
139	Modeling human yolk sac hematopoiesis with pluripotent stem cells. Journal of Experimental Medicine, 2022, 219, .	4.2	25
140	Substrate and mechanotransduction influence SERCA2a localization in human pluripotent stem cell-derived cardiomyocytes affecting functional performance. Stem Cell Research, 2017, 25, 107-114.	0.3	24
141	In Vivo Detection of Embryonic Stem Cell–Derived Cardiovascular Progenitor Cells Using Cy3-Labeled Gadofluorine M in Murine Myocardium. JACC: Cardiovascular Imaging, 2009, 2, 1114-1122.	2.3	23
142	New markers for tracking endoderm induction and hepatocyte differentiation from human pluripotent stem cells. Development (Cambridge), 2015, 142, 4253-65.	1.2	22
143	The heart LIM protein gene (Hlp), expressed in the developing and adult heart, defines a new tissue-specific LIM-only protein family. Mechanisms of Development, 2002, 116, 187-192.	1.7	20
144	Human Stem Cell-Derived Cardiac Model of Chronic Drug Exposure. ACS Biomaterials Science and Engineering, 2017, 3, 1911-1921.	2.6	20

GORDON M KELLER

#	Article	IF	CITATIONS
145	The cardiomyocyte lineage is critical for optimization of stem cell therapy in a mouse model of myocardial infarction. FASEB Journal, 2010, 24, 1073-1081.	0.2	16
146	A 3-D human model of complex cardiac arrhythmias. Acta Biomaterialia, 2021, 132, 149-161.	4.1	15
147	Clonal generation of multipotent and unipotent hemopoietic blast cell colonies in vitro. Journal of Cellular Physiology, 1984, 120, 29-35.	2.0	14
148	Gene delivery by embryonic stem cells for malignant glioma therapy: hype or hope?. Cancer Biology and Therapy, 2008, 7, 1341-1347.	1.5	14
149	Embryonic stem cell–derived astrocytes: a novel gene therapy vector for brain tumors. Neurosurgical Focus, 2005, 19, 1-6.	1.0	13
150	Looking inwards: opening a window onto human development. Development (Cambridge), 2015, 142, 1-2.	1.2	13
151	Single-Cell Mechanical Analysis of Human Pluripotent Stem Cell-Derived Cardiomyocytes for Drug Testing and Pathophysiological Studies. Stem Cell Reports, 2020, 15, 587-596.	2.3	13
152	Photochemically Activated Notch Signaling Hydrogel Preferentially Differentiates Human Derived Hepatoblasts to Cholangiocytes. Advanced Functional Materials, 2021, 31, 2006116.	7.8	13
153	Hematopoietic Development of ES Cells in Culture. , 2002, 63, 209-230.		12
154	Regulated Expression and Role of c-Myb in the Cardiovascular-Directed Differentiation of Mouse Embryonic Stem Cells. Circulation Research, 2012, 110, 253-264.	2.0	12
155	A Quantitative Proteomic Analysis of Hemogenic Endothelium Reveals Differential Regulation of Hematopoiesis by SOX17. Stem Cell Reports, 2015, 5, 291-304.	2.3	12
156	The In Vitro Differentiation of Mouse Embryonic Stem Cells into Neutrophils. Methods in Enzymology, 2003, 365, 129-142.	0.4	10
157	Therapeutic correction of hemophilia A by transplantation of hPSC-derived liver sinusoidal endothelial cell progenitors. Cell Reports, 2022, 39, 110621.	2.9	9
158	Unsuspected role of the brain morphogenetic gene Otx1 in hematopoiesis. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10299-10303.	3.3	8
159	Silent IL2RG Gene Editing in Human Pluripotent Stem Cells. Molecular Therapy, 2016, 24, 582-591.	3.7	8
160	Introduction of a selectable gene into murine T-lymphoblasts by a retroviral vector. Journal of Immunological Methods, 1986, 89, 93-101.	0.6	7
161	Hemopoiesis in spleen and bone marrow cultures. Journal of Cellular Physiology, 1983, 116, 7-15.	2.0	6
162	Overexpression of HOX11 Leads to the Immortalization of Embryonic Precursors With Both Primitive and Definitive Hematopoietic Potential. Blood, 1998, 92, 877-887.	0.6	6

#	Article	IF	CITATIONS
163	Hemopoietic colonies on the chorioallantoic membrane of the chick embryo: Induction by embryonic, adherent, non-hemopoietic spleen cells. Journal of Cellular Physiology, 1980, 102, 351-365.	2.0	5
164	One‣tep Formation of Proteinâ€Based Tubular Structures for Functional Devices and Tissues. Advanced Healthcare Materials, 2021, 10, e2001746.	3.9	5
165	The Introduction of Genes into Mouse Embryos and Stem Cells. , 1992, , 440-458.		4
166	Establishment of ES Cells Secreting Human Factor VIII for Hemophilia A-Targeted Cell Therapy Blood, 2006, 108, 1012-1012.	0.6	4
167	Stem cells and regeneration: a special issue. Development (Cambridge), 2013, 140, 2445-2445.	1.2	3
168	Transcriptional Control of Hematopoietic Development. , 1995, , 23-34.		3
169	Leptin Stimulates Fetal and Adult Erythroid and Myeloid Development. Blood, 1997, 89, 1507-1512.	0.6	2
170	Highlights from Philadelphia: ISSCR 2008. Cell Stem Cell, 2008, 3, 259-264.	5.2	1
171	Hematopoietic stem/progenitor cell conversion from human pluripotent stem cells. Protocol Exchange, 0, , .	0.3	1
172	Induced pluripotent stem cells used to reveal drug actions in a long QT syndrome family with complex genetics. Journal of Cell Biology, 2013, 200, i3-i3.	2.3	1
173	Specificity of Smad Signaling during Primitive Erythropoiesis Blood, 2004, 104, 2785-2785.	0.6	0
174	Serum Free Induction of a Lympho-Hematopoietic Precursor Population from Murine Embryonic Stem Cells Blood, 2005, 106, 3605-3605.	0.6	0
175	Knockdown of the Fanconi Anemia Gene FANCD2 Directly Affects Hematopoiesis in Human Embryonic Stem Cells Blood, 2006, 108, 1318-1318.	0.6	0
176	Generation of Megakaryocytes from Human Embryonic Stem Cells Blood, 2007, 110, 1265-1265.	0.6	0
177	Stage-specific signaling through TGFβ family members and WNT regulates patterning and pancreatic specification of human pluripotent stem cells. Journal of Cell Science, 2011, 124, e1-e1.	1.2	0