Yiping Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2064270/publications.pdf

Version: 2024-02-01

		172207	189595
78	2,836	29	50
papers	citations	h-index	g-index
79	79	79	3404
7.5	13	/ /	3707
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Surface Modification of Gold Nanoparticles with Small Molecules for Biochemical Analysis. Accounts of Chemical Research, 2017, 50, 310-319.	7.6	380
2	One-Step Detection of Pathogens and Viruses: Combining Magnetic Relaxation Switching and Magnetic Separation. ACS Nano, 2015, 9, 3184-3191.	7.3	182
3	Quantitative Detection of MicroRNA in One Step <i>via</i> Next Generation Magnetic Relaxation Switch Sensing. ACS Nano, 2016, 10, 6685-6692.	7.3	127
4	Magnetic particles-enabled biosensors for point-of-care testing. TrAC - Trends in Analytical Chemistry, 2018, 106, 213-224.	5 . 8	127
5	A dual-readout chemiluminescent-gold lateral flow test for multiplex and ultrasensitive detection of disease biomarkers in real samples. Nanoscale, 2016, 8, 15205-15212.	2.8	93
6	Horseradish Peroxidase-Mediated, lodide-Catalyzed Cascade Reaction for Plasmonic Immunoassays. Analytical Chemistry, 2015, 87, 10688-10692.	3.2	83
7	Click Chemistry-Mediated Nanosensors for Biochemical Assays. Theranostics, 2016, 6, 969-985.	4.6	83
8	Controllable Assembly of Enzymes for Multiplexed Labâ€onâ€aâ€Chip Bioassays with a Tunable Detection Range. Angewandte Chemie - International Edition, 2018, 57, 7503-7507.	7.2	77
9	Double-Enzymes-Mediated Bioluminescent Sensor for Quantitative and Ultrasensitive Point-of-Care Testing. Analytical Chemistry, 2017, 89, 5422-5427.	3.2	72
10	Skiving stacked sheets of paper into test paper for rapid and multiplexed assay. Science Advances, 2017, 3, eaao4862.	4.7	71
11	Streptavidin-biotin-peroxidase nanocomplex-amplified microfluidics immunoassays for simultaneous detection of inflammatory biomarkers. Analytica Chimica Acta, 2017, 982, 138-147.	2.6	66
12	A Fluoroimmunoassay Based on Quantum Dotâ^'Streptavidin Conjugate for the Detection of Chlorpyrifos. Journal of Agricultural and Food Chemistry, 2010, 58, 8895-8903.	2.4	54
13	Catalyst-free aerobic oxidation of aldehydes into acids in water under mild conditions. Green Chemistry, 2017, 19, 5708-5713.	4.6	52
14	Bioorthogonal Reaction-Mediated ELISA Using Peroxide Test Strip as Signal Readout for Point-of-Care Testing. Analytical Chemistry, 2017, 89, 6113-6119.	3.2	51
15	Cascade Reaction-Mediated Assembly of Magnetic/Silver Nanoparticles for Amplified Magnetic Biosensing. Analytical Chemistry, 2018, 90, 6906-6912.	3.2	48
16	One-step multiplexed detection of foodborne pathogens: Combining a quantum dot-mediated reverse assaying strategy and magnetic separation. Biosensors and Bioelectronics, 2016, 86, 996-1002.	5. 3	46
17	One-step detection of pathogens and cancer biomarkers by the naked eye based on aggregation of immunomagnetic beads. Nanoscale, 2016, 8, 1100-1107.	2.8	44
18	Label-Free Sandwich Imaging Ellipsometry Immunosensor for Serological Detection of Procalcitonin. Analytical Chemistry, 2018, 90, 8002-8010.	3.2	44

#	Article	IF	CITATIONS
19	An enzyme-mediated competitive colorimetric sensor based on Au@Ag bimetallic nanoparticles for highly sensitive detection of disease biomarkers. Analyst, The, 2017, 142, 2954-2960.	1.7	42
20	Broad-Range Magnetic Relaxation Switching Bioassays Using Click Chemistry-Mediated Assembly of Polystyrene Beads and Magnetic Nanoparticles. ACS Sensors, 2019, 4, 1942-1949.	4.0	42
21	Simultaneous and Ultrasensitive Detection of Foodborne Bacteria by Gold Nanoparticles-Amplified Microcantilever Array Biosensor. Frontiers in Chemistry, 2019, 7, 232.	1.8	41
22	Background Signal-Free Magnetic Bioassay for Food-Borne Pathogen and Residue of Veterinary Drug via Mn(VII)/Mn(II) Interconversion. ACS Sensors, 2019, 4, 2771-2777.	4.0	39
23	One-step and DNA amplification-free detection of Listeria monocytogenes in ham samples: Combining magnetic relaxation switching and DNA hybridization reaction. Food Chemistry, 2021, 338, 127837.	4.2	38
24	Direct Transverse Relaxation Time Biosensing Strategy for Detecting Foodborne Pathogens through Enzyme-Mediated Sol–Gel Transition of Hydrogels. Analytical Chemistry, 2021, 93, 6613-6619.	3.2	37
25	Photonic crystal fiber-based immunosensor for high-performance detection of alpha fetoprotein. Biosensors and Bioelectronics, 2017, 91, 431-435.	5.3	36
26	Magnetic Lateral Flow Strip for the Detection of Cocaine in Urine by Naked Eyes and Smart Phone Camera. Sensors, 2017, 17, 1286.	2.1	36
27	Amplified Magnetic Resonance Sensing via Enzyme-Mediated Click Chemistry and Magnetic Separation. Analytical Chemistry, 2019, 91, 15555-15562.	3.2	36
28	Peptide-Mediated Controllable Cross-Linking of Gold Nanoparticles for Immunoassays with Tunable Detection Range. Analytical Chemistry, 2018, 90, 8234-8240.	3.2	35
29	Double-enzymes-mediated Fe2+/Fe3+ conversion as magnetic relaxation switch for pesticide residues sensing. Journal of Hazardous Materials, 2021, 403, 123619.	6.5	34
30	Versatile T ₁ -Based Chemical Analysis Platform Using Fe ³⁺ /Fe ²⁺ Interconversion. Analytical Chemistry, 2018, 90, 1234-1240.	3.2	30
31	Enzyme-Free Amplification Strategy for Biosensing Using Fe ³⁺ –Poly(glutamic acid) Coordination Chemistry. Analytical Chemistry, 2018, 90, 4725-4732.	3.2	27
32	Highly sensitive magnetic relaxation sensing method for aflatoxin B1 detection based on Au NP-assisted triple self-assembly cascade signal amplification. Biosensors and Bioelectronics, 2021, 192, 113489.	5.3	27
33	Fibroblast growth factor 21 is required for the therapeutic effects of Lactobacillus rhamnosus GG against fructose-induced fatty liver in mice. Molecular Metabolism, 2019, 29, 145-157.	3.0	26
34	Optical Fiber-Mediated Immunosensor with a Tunable Detection Range for Multiplexed Analysis of Veterinary Drug Residues. ACS Sensors, 2019, 4, 1864-1872.	4.0	26
35	A Highly Sensitive Capillary-Based Immunosensor by Combining with Peroxidase Nanocomplex-Mediated Signal Amplification for Detection of Procalcitonin in Human Serum. ACS Omega, 2019, 4, 6210-6217.	1.6	26
36	Cu-T ₁ Sensor for Versatile Analysis. Analytical Chemistry, 2018, 90, 2833-2838.	3.2	25

#	Article	IF	CITATIONS
37	Click Reaction-Mediated <i>T</i> ₂ Immunosensor for Ultrasensitive Detection of Pesticide Residues via Brush-like Nanostructure-Triggered Coordination Chemistry. Journal of Agricultural and Food Chemistry, 2019, 67, 9942-9949.	2.4	25
38	Gd3+-nanoparticle-enhanced multivalent biosensing that combines magnetic relaxation switching and magnetic separation. Biosensors and Bioelectronics, 2020, 155, 112106.	5. 3	25
39	Magnetic Relaxation Switching Immunoassay Based on Hydrogen Peroxideâ€Mediated Assembly of Ag@Au–Fe ₃ O ₄ Nanoprobe for Detection of Aflatoxin B1. Small, 2021, 17, e2104596.	5.2	23
40	Fe-T ₁ Sensor Based on Coordination Chemistry for Sensitive and Versatile Bioanalysis. Analytical Chemistry, 2018, 90, 9148-9155.	3.2	22
41	A magnetic relaxation DNA biosensor for rapid detection of Listeria monocytogenes using phosphatase-mediated Mn(VII)/Mn(II) conversion. Food Control, 2021, 125, 107959.	2.8	22
42	Manganese dioxide nanoparticle-based colorimetric immunoassay for the detection of alpha-fetoprotein. Mikrochimica Acta, 2017, 184, 2767-2774.	2.5	21
43	T ₁ -Mediated Nanosensor for Immunoassay Based on an Activatable MnO ₂ Nanoassembly. Analytical Chemistry, 2018, 90, 2765-2771.	3.2	21
44	Horseradish peroxidase-catalyzed formation of polydopamine for ultra-sensitive magnetic relaxation sensing of aflatoxin B1. Journal of Hazardous Materials, 2021, 419, 126403.	6.5	21
45	Gold core @ platinum shell nanozyme-mediated magnetic relaxation switching DNA sensor for the detection of Listeria monocytogenes in chicken samples. Food Control, 2022, 137, 108916.	2.8	21
46	Versatile Biosensing Toolkit Using an Electronic Particle Counter. Analytical Chemistry, 2021, 93, 6178-6187.	3.2	20
47	Development of nanosensor by bioorthogonal reaction for multi-detection of the biomarkers of hepatocellular carcinoma. Sensors and Actuators B: Chemical, 2021, 334, 129653.	4.0	20
48	Point-of-Care Detection of \hat{l}^2 -Lactamase in Milk with a Universal Fluorogenic Probe. Analytical Chemistry, 2016, 88, 5605-5609.	3.2	19
49	Magnetic relaxation switching biosensor via polydopamine nanoparticle mediated click chemistry for detection of chlorpyrifos. Biosensors and Bioelectronics, 2022, 207, 114127.	5. 3	19
50	Detection of Hepatitis B Virus M204I Mutation by Quantum Dot-Labeled DNA Probe. Sensors, 2017, 17, 961.	2.1	17
51	Bioorthogonal Reactions Amplify Magnetic Nanoparticles Binding and Assembly for Ultrasensitive Magnetic Resonance Sensing. Analytical Chemistry, 2020, 92, 2787-2793.	3.2	15
52	Ultra-sensitive capillary immunosensor combining porous-layer surface modification and biotin-streptavidin nano-complex signal amplification: Application for sensing of procalcitonin in serum. Talanta, 2019, 205, 120089.	2.9	14
53	Open Surface Droplet Microfluidic Magnetosensor for Microcystin-LR Monitoring in Reservoir. Analytical Chemistry, 2020, 92, 3409-3416.	3.2	14
54	Polydopamine nanoparticle-mediated, click chemistry triggered, microparticle-counting immunosensor for the sensitive detection of ochratoxin A. Journal of Hazardous Materials, 2022, 428, 128206.	6.5	14

#	Article	IF	CITATIONS
55	Enzyme-free catalytic hairpin assembly reaction-mediated micro-orifice resistance assay for the ultrasensitive and low-cost detection of Listeria monocytogenes. Biosensors and Bioelectronics, 2022, 214, 114490.	5.3	14
56	Nanoparticles-Enabled Surface-Enhanced Imaging Ellipsometry for Amplified Biosensing. Analytical Chemistry, 2019, 91, 6769-6774.	3.2	13
57	Microfluidic Chip-Based Immunoassay for Reliable Detection of Cloxacillin in Poultry. Food Analytical Methods, 2016, 9, 3163-3169.	1.3	12
58	Microwave-Assisted Synthesis of Hollow Microspheres with Multicomponent Nanocores for Heavy-Metal Removal and Magnetic Sensing. ACS Applied Materials & Interfaces, 2020, 12, 46779-46787.	4.0	12
59	Low-Cost and Convenient Microchannel Resistance Biosensing Platform by Directly Translating Biorecognition into a Current Signal. Analytical Chemistry, 2021, 93, 15049-15057.	3.2	12
60	Multiplex immunoassays using surface modification-mediated porous layer open tubular capillary. Analytica Chimica Acta, 2018, 1043, 1-10.	2.6	11
61	Enzyme-modulated photothermal immunoassay of chloramphenicol residues in milk and egg using a self-calibrated thermal imager. Food Chemistry, 2022, 392, 133232.	4.2	11
62	A magnetic relaxation switching immunosensor for one-step detection of salbutamol based on gold nanoparticle–streptavidin conjugate. RSC Advances, 2015, 5, 95401-95404.	1.7	10
63	Controllable Assembly of Enzymes for Multiplexed Labâ€onâ€aâ€Chip Bioassays with a Tunable Detection Range. Angewandte Chemie, 2018, 130, 7625-7629.	1.6	10
64	Fluorescence Resonance Energy Transfer-Mediated Immunosensor Based on Design and Synthesis of the Substrate of Amp Cephalosporinase for Biosensing. Analytical Chemistry, 2019, 91, 11316-11323.	3.2	10
65	A colorimetric and ultrasensitive immunosensor for one-step pathogen detection via the combination of nanoparticle-triggered signal amplification and magnetic separation. RSC Advances, 2015, 5, 100633-100637.	1.7	9
66	Integrating magnetic metal-organic frameworks-based sample preparation with microchannel resistance biosensor for rapid and quantitative detection of aflatoxin B1. Journal of Hazardous Materials, 2022, 438, 129425.	6.5	9
67	Catalyst-Free and One-Pot Procedure for Fast Formation of α-Ketoamides Using α-Oxocarboxylic Acids and Amines at Room Temperature. ChemistrySelect, 2017, 2, 4638-4641.	0.7	8
68	Structure identification and toxicity evaluation of one newly-discovered dechlorinated photoproducts of chlorpyrifos. Chemosphere, 2022, 301, 134822.	4.2	8
69	DNA enzyme mediated ratiometric fluorescence assay for Pb(II) ion using magnetic nanosphere-loaded gold nanoparticles and CdSe/ZnS quantum dots. Mikrochimica Acta, 2020, 187, 273.	2.5	7
70	Polymorphisms and features of cytomegalovirus UL144 and UL146 in congenitally infected neonates with hepatic involvement. PLoS ONE, 2017, 12, e0171959.	1.1	5
71	Click Chemistry-Mediated Particle Counting Sensing via Cu(II)-Polyglutamic Acid Coordination Chemistry and Enzymatic Reaction. Analytical Chemistry, 2022, 94, 5293-5300.	3.2	5
72	Carbon nanotube–mediated antibody-free suspension array for determination of typical endocrine-disrupting chemicals. Mikrochimica Acta, 2020, 187, 202.	2.5	3

YIPING CHEN

#	Article	IF	CITATIONS
73	One-step homogeneous micro-orifice resistance immunoassay for detection of chlorpyrifos in orange samples. Food Chemistry, 2022, 386, 132712.	4.2	3
74	Study on Chemiluminescence Assay of Surfactant PEG-400 Using Luminol–Hydrogen Peroxide System. Analytical Letters, 2008, 41, 1279-1289.	1.0	2
75	Clinical Value of Dorsal Medulla Oblongata Involvement Detected With Conventional Magnetic Resonance Imaging for Prediction of Outcome in Children With Enterovirus 71-Related Brainstem Encephalitis. Pediatric Infectious Disease Journal, 2019, 38, 99-103.	1.1	2
76	Unveiling the reaction process of the amine in direct amidation of aromatic ketones in H $_2$ O. ChemistryOpen, 2020, 9, 996-1000.	0.9	1
77	A homogeneous microchannel resistance sensor based on target-induced aggregation of polystyrene microspheres. Sensors and Actuators B: Chemical, 2022, 369, 132277.	4.0	1
78	Advances in the Bacteriophage-Based Precise Identification and Magnetic Relaxation Switch Sensor for Rapid Detection of Foodborne Pathogens. , 0 , , .		0