
Edgar Muñoz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2064253/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Super-tough carbon-nanotube fibres. Nature, 2003, 423, 703-703.	13.7	1,394
2	FTIR study of the evolution of coal structure during the coalification process. Organic Geochemistry, 1996, 24, 725-735.	0.9	702
3	Controlled Assembly of Carbon Nanotubes by Designed Amphiphilic Peptide Helices. Journal of the American Chemical Society, 2003, 125, 1770-1777.	6.6	481
4	Fabrication and Characterization of Thin Films of Single-Walled Carbon Nanotube Bundles on Flexible Plastic Substrates. Journal of the American Chemical Society, 2004, 126, 4462-4463.	6.6	360
5	Improving the mechanical properties of single-walled carbon nanotube sheets by intercalation of polymeric adhesives. Applied Physics Letters, 2003, 82, 1682-1684.	1.5	253
6	V2O5 nanofibre sheet actuators. Nature Materials, 2003, 2, 316-319.	13.3	248
7	Continuous carbon nanotube composite fibers: properties, potential applications, and problemsElectronic supplementary information (ESI) available: frontispiece figure. See http://www.rsc.org/suppdata/jm/b3/b312092a/. Journal of Materials Chemistry, 2004, 14, 1.	6.7	247
8	Carbon nanotube networks as gas sensors for NO2 detection. Talanta, 2008, 77, 758-764.	2.9	117
9	Simultaneous Reduction of Graphene Oxide and Polyaniline: Doping-Assisted Formation of a Solid-State Charge-Transfer Complex. Journal of Physical Chemistry C, 2011, 115, 10468-10474.	1.5	104
10	Novel selective sensors based on carbon nanotube films for hydrogen detection. Sensors and Actuators B: Chemical, 2007, 122, 75-80.	4.0	99
11	Graphene oxide as sensitive layer in Love-wave surface acoustic wave sensors for the detection of chemical warfare agent simulants. Talanta, 2016, 148, 393-400.	2.9	95
12	Arbitrarily Shaped Fiber Assemblies from Spun Carbon Nanotube Gel Fibers. Advanced Functional Materials, 2007, 17, 2918-2924.	7.8	55
13	Toxicity of Carbon Nanomaterials and Their Potential Application as Drug Delivery Systems: In Vitro Studies in Caco-2 and MCF-7 Cell Lines. Nanomaterials, 2020, 10, 1617.	1.9	54
14	Carbon nanotube growth on cobalt-sprayed substrates by thermal CVD. Materials Science and Engineering C, 2006, 26, 1185-1188.	3.8	51
15	Laser synthesis and luminescence properties of SrAl2O4:Eu2+, Dy3+ phosphors. Journal of the European Ceramic Society, 2012, 32, 4363-4369.	2.8	39
16	Aligned carbon nanotubes grown on alumina and quartz substrates by a simple thermal CVD process. Diamond and Related Materials, 2006, 15, 1059-1063.	1.8	34
17	Synthesis and application of gold-carbon hybrids as catalysts for the hydroamination of alkynes. Applied Catalysis A: General, 2013, 456, 88-95.	2.2	34
18	Carbon Nanofibers Modified with Heteroatoms as Metalâ€Free Catalysts for the Oxidative Dehydrogenation of Propane. ChemSusChem, 2014, 7, 2496-2504.	3.6	31

Edgar Muñoz

#	Article	IF	CITATIONS
19	Electrochemically Tuned Properties for Electrolyteâ€Free Carbon Nanotube Sheets. Advanced Functional Materials, 2009, 19, 2266-2272.	7.8	27
20	Effects of surfactant and fabrication procedure on the electrical conductivity and electromagnetic shielding of single-walled carbon nanotube films. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 425-432.	0.8	27
21	Gold/carbon nanocomposite foam. Chemical Physics Letters, 2006, 420, 86-89.	1.2	24
22	Multifunctional, biocompatible and pH-responsive carbon nanotube- and graphene oxide/tectomer hybrid composites and coatings. Nanoscale, 2017, 9, 7791-7804.	2.8	24
23	Production of carbon nanotubes by CO2-laser evaporation of various carbonaceous feedstock materials. Nanotechnology, 2001, 12, 147-151.	1.3	21
24	Single-walled carbon nanotube-supported platinum nanoparticles as fuel cell electrocatalysts. Journal of Materials Research, 2006, 21, 2841-2846.	1.2	20
25	Two-Dimensional, pH-Responsive Oligoglycine-Based Nanocarriers. ACS Applied Materials & Interfaces, 2016, 8, 1913-1921.	4.0	16
26	Polyazomethine/carbon nanotube composites. Materials Science and Engineering C, 2006, 26, 1198-1201.	3.8	15
27	FTIR and Thermogravimetric Analysis of Biotin-Functionalized Single-Walled Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2007, 7, 3473-3476.	0.9	15
28	Important parameters for the catalytic nanoparticles formation towards the growth of carbon nanotube aligned arrays. Diamond and Related Materials, 2007, 16, 1082-1086.	1.8	14
29	Tailored production of nanostructured metal/carbon foam by laser ablation of selected organometallic precursors. Carbon, 2010, 48, 1807-1814.	5.4	13
30	Preparation and characterization of nematic polyazomethine/singleâ€walled carbon nanotube composites prepared by <i>in situ</i> polymerization. Journal of Polymer Science Part A, 2009, 47, 2361-2372.	2.5	12
31	â€~Laser chemistry' synthesis, physicochemical properties, and chemical processing of nanostructured carbon foams. Nanoscale Research Letters, 2013, 8, 233.	3.1	12
32	Long-chain amine-templated synthesis of gallium sulfide and gallium selenide nanotubes. Nanoscale, 2016, 8, 11698-11706.	2.8	11
33	Chemical Postdeposition Treatments To Improve the Adhesion of Carbon Nanotube Films on Plastic Substrates. ACS Omega, 2019, 4, 2804-2811.	1.6	11
34	Single-walled carbon nanotube buckypaper as support for highly permeable double layer polyamide/zeolitic imidazolate framework in nanofiltration processes. Journal of Membrane Science, 2022, 652, 120490.	4.1	9
35	Synthesis of DAM-1 molecular sieves containing single walled carbon nanotubes. Microporous and Mesoporous Materials, 2004, 67, 61-65.	2.2	7
36	Functionalization of Silver Nanowire Transparent Electrodes with Self-Assembled 2-Dimensional Tectomer Nanosheets. ACS Applied Nano Materials, 2018, 1, 3903-3912.	2.4	7

Edgar Muñoz

#	Article	IF	CITATIONS
37	Laser-Deposited Carbon Aerogel Derived from Graphene Oxide Enables NO ₂ -Selective Parts-per-Billion Sensing. ACS Applied Materials & Interfaces, 2020, 12, 39541-39548.	4.0	7
38	Carbon nanotube-based SAW sensors. , 2013, , .		5
39	Amyloidogenic Peptide/Single-Walled Carbon Nanotube Composites Based on Tau-Protein-Related Peptides Derived from AcPHF6: Preparation and Dispersive Properties. Journal of Physical Chemistry B, 2013, 117, 7593-7604.	1.2	5
40	Attenuation of microwave electromagnetic radiation by means of buckypaper. Technical Physics, 2011, 56, 1679-1684.	0.2	4
41	Two-dimensional oligoglycine tectomer adhesives for graphene oxide fiber functionalization. Carbon, 2019, 147, 460-475.	5.4	4
42	<title>Fabrication, morphology, and actuation from novel single-wall carbon nanotube/Nafion composites</title> . , 2002, , .		3
43	NO2 detection with Single Walled Carbon Nanotube Networks. , 2007, , .		3
44	Carbon nanotube/TiO <inf>2</inf> nanotube hybrid films as resistive gas sensor. , 2013, , .		2
45	Carbon nanotube networks as sensitive layers for resistive gas sensor applications. Nanopages, 2013, 8, 15-26.	0.2	2
46	Multi-Walled Carbon Nanotube Networks As Gas Sensors for NO2 Detection. , 2007, , .		1
47	Mechanical properties of hybrid polymer nanotube systems. , 2003, , .		0