Cinta Romay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2064209/publications.pdf

Version: 2024-02-01

304743 206112 4,611 49 22 48 h-index citations g-index papers 60 60 60 4825 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	The Genetic Architecture of Maize Flowering Time. Science, 2009, 325, 714-718.	12.6	1,284
2	Comprehensive genotyping of the USA national maize inbred seed bank. Genome Biology, 2013, 14, R55.	8.8	458
3	The Genetic Architecture Of Maize Height. Genetics, 2014, 196, 1337-1356.	2.9	329
4	A study of allelic diversity underlying flowering-time adaptation in maize landraces. Nature Genetics, 2017, 49, 476-480.	21.4	254
5	Novel Methods to Optimize Genotypic Imputation for Lowâ€Coverage, Nextâ€Generation Sequence Data in Crop Plants. Plant Genome, 2014, 7, plantgenome2014.05.0023.	2.8	241
6	High-resolution genetic mapping of maize pan-genome sequence anchors. Nature Communications, 2015, 6, 6914.	12.8	213
7	Dysregulation of expression correlates with rare-allele burden and fitness loss in maize. Nature, 2018, 555, 520-523.	27.8	211
8	Construction of the third-generation Zea mays haplotype map. GigaScience, 2018, 7, 1-12.	6.4	191
9	Genomic estimation of complex traits reveals ancient maize adaptation to temperate North America. Science, 2017, 357, 512-515.	12.6	169
10	Genome-wide association analysis of seedling root development in maize (Zea mays L.). BMC Genomics, 2015, 16, 47.	2.8	159
11	Identification of genetic variants associated with maize flowering time using an extremely large multiâ€genetic background population. Plant Journal, 2016, 86, 391-402.	5.7	122
12	The effect of artificial selection on phenotypic plasticity in maize. Nature Communications, 2017, 8, 1348.	12.8	105
13	Genome-wide association study of Fusarium ear rot disease in the U.S.A. maize inbred line collection. BMC Plant Biology, 2014, 14, 372.	3.6	85
14	The genetic architecture of teosinte catalyzed and constrained maize domestication. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5643-5652.	7.1	59
15	A sorghum practical haplotype graph facilitates genomeâ€wide imputation and costâ€effective genomic prediction. Plant Genome, 2020, 13, e20009.	2.8	54
16	The importance of dominance and genotype-by-environment interactions on grain yield variation in a large-scale public cooperative maize experiment. G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	52
17	Utility of Climatic Information via Combining Ability Models to Improve Genomic Prediction for Yield Within the Genomes to Fields Maize Project. Frontiers in Genetics, 2020, 11, 592769.	2.3	44
18	Mapping of QTL for resistance to the Mediterranean corn borer attack using the intermated B73Â×ÂMo17 (IBM) population of maize. Theoretical and Applied Genetics, 2009, 119, 1451-1459.	3.6	42

#	Article	IF	Citations
19	Maize genomes to fields (G2F): 2014–2017 field seasons: genotype, phenotype, climatic, soil, and inbred ear image datasets. BMC Research Notes, 2020, 13, 71.	1.4	38
20	Climatic and Genotypic Effects for Grain Yield in Maize under Stress Conditions. Crop Science, 2010, 50, 51-58.	1.8	36
21	Dominance Effects and Functional Enrichments Improve Prediction of Agronomic Traits in Hybrid Maize. Genetics, 2020, 215, 215-230.	2.9	35
22	Effect of Recurrent Selection on the Genetic Structure of Two Broadâ€Based Spanish Maize Populations. Crop Science, 2012, 52, 1493-1502.	1.8	29
23	Conserved noncoding sequences provide insights into regulatory sequence and loss of gene expression in maize. Genome Research, 2021, 31, 1245-1257.	5.5	29
24	The genetic architecture of the maize progenitor, teosinte, and how it was altered during maize domestication. PLoS Genetics, 2020, 16, e1008791.	3.5	27
25	Diverse Chromosomal Locations of Quantitative Trait Loci for Tolerance to <i>Maize chlorotic mottle virus</i> in Five Maize Populations. Phytopathology, 2018, 108, 748-758.	2.2	26
26	Maize Genomes to Fields: 2014 and 2015 field season genotype, phenotype, environment, and inbred ear image datasets. BMC Research Notes, 2018, 11, 452.	1.4	25
27	Stomatal conductance, xylem water transport, and root traits underpin improved performance under drought and well-watered conditions across a diverse panel of maize inbred lines. Field Crops Research, 2019, 234, 119-128.	5.1	24
28	Relative utility of agronomic, phenological, and morphological traits for assessing genotypeâ€byâ€environment interaction in maize inbreds. Crop Science, 2020, 60, 62-81.	1.8	21
29	Three Cycles of Fullâ€Sib Reciprocal Recurrent Selection in Two Spanish Maize Populations. Crop Science, 2011, 51, 1016-1022.	1.8	19
30	Genetic Relationship Between Maize Resistance to Corn Borer Attack and Yield. Crop Science, 2012, 52, 1176-1180.	1.8	18
31	Evaluation of European maize (Zea mays L.) germplasm under cold conditions. Genetic Resources and Crop Evolution, 2010, 57, 329-335.	1.6	16
32	Coregulation of ribosomal RNA with hundreds of genes contributes to phenotypic variation. Genome Research, 2018, 28, 1555-1565.	5.5	16
33	Unoccupied aerial systems discovered overlooked loci capturing the variation of entire growing period in maize. Plant Genome, 2021, 14, e20102.	2.8	16
34	Maize for bread under organic agriculture. Spanish Journal of Agricultural Research, 2008, 6, 241.	0.6	14
35	Adaptation of super-sweet maize to cold conditions: mutant×genotype interaction. Journal of Agricultural Science, 2010, 148, 401-405.	1.3	10
36	Genetic and environmental factors reducing the incidence of the storage pest <i>SitotrogaÂcerealella</i> in maize. Entomologia Experimentalis Et Applicata, 2008, 128, 421-428.	1.4	9

#	Article	IF	CITATIONS
37	Genomic regions affecting fitness of the sweet corn mutant sugary1. Journal of Agricultural Science, 2013, 151, 396-406.	1.3	7
38	Genome-wide imputation using the practical haplotype graph in the heterozygous crop cassava. G3: Genes, Genomes, Genetics, 2022 , 12 , .	1.8	7
39	Identification of miRNA-eQTLs in maize mature leaf by GWAS. BMC Genomics, 2020, 21, 689.	2.8	6
40	Rapid, Affordable, and Scalable Genotyping for Germplasm Exploration in Maize. Compendium of Plant Genomes, 2018, , 31-46.	0.5	6
41	Causes of agronomic differences between synthetics developed by the random and convergent cross methods. Field Crops Research, 2009, 110, 229-234.	5.1	5
42	Domestication reshaped the genetic basis of inbreeding depression in a maize landrace compared to its wild relative, teosinte. PLoS Genetics, 2021, 17, e1009797.	3.5	5
43	A multiple alignment workflow shows the effect of repeat masking and parameter tuning on alignment in plants. Plant Genome, 2022, 15, e20204.	2.8	5
44	Joint analysis of days to flowering reveals independent temperate adaptations in maize. Heredity, 2021, 126, 929-941.	2.6	4
45	Genome-wide analysis of deletions in maize population reveals abundant genetic diversity and functional impact. Theoretical and Applied Genetics, 2021, 135, 273.	3.6	4
46	Effect of selection on the heterozygosity of inbred lines of maize. Molecular Breeding, 2007, 20, 117-129.	2.1	3
47	Effect of Visual Selection During the Development of Inbred Lines of Maize. Crop Science, 2012, 52, 2538-2545.	1.8	2
48	Eighteen cycles of recurrent mass selection for early flowering in two maize synthetics. Euphytica, 2019, 215, 1.	1.2	2
49	A conserved genetic architecture among populations of the maize progenitor, teosinte, was radically altered by domestication. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	1