List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2064009/publications.pdf Version: 2024-02-01

		101384	95083
109	5,115	36	68
papers	citations	h-index	g-index
113	113	113	6467
all docs	docs citations	times ranked	citing authors

ZHENC BO

#	Article	IF	CITATIONS
1	Techno-economic analysis of a solar thermochemical cycle-based direct coal liquefaction system for low-carbon oil production. Energy, 2022, 239, 122167.	4.5	7
2	Highâ€performance water purification and desalination by solarâ€driven interfacial evaporation and photocatalytic <scp>VOC</scp> decomposition enabled by hierarchical <scp> TiO ₂ â€CuO </scp> nanoarchitecture. International Journal of Energy Research, 2022, 46, 1313-1326.	2.2	21
3	Nanotexturing-enhanced heat transfer and interfacial evaporation for energy-efficient solar-thermal water desalination. International Journal of Heat and Mass Transfer, 2022, 186, 122462.	2.5	11
4	Ultrathick MoS ₂ Films with Exceptionally High Volumetric Capacitance. Advanced Energy Materials, 2022, 12, .	10.2	44
5	Entropy generation analysis in supercapacitor modules based on a three-dimensional coupled thermal model. Energy, 2022, 244, 123218.	4.5	6
6	Aligned Ti3C2TX Aerogel with High Rate Performance, Power Density and Sub-Zero-Temperature Stability. Energies, 2022, 15, 1191.	1.6	6
7	MXene-Based Electrodes for Supercapacitor Energy Storage. Energy & amp; Fuels, 2022, 36, 2390-2406.	2.5	67
8	Regulation of Electrode–Electrolyte Interactions for Improved Heat Recovery of a Thermo-Induced Electric Double-Layer Capacitor. Energy & Fuels, 2022, 36, 3304-3312.	2.5	2
9	Anion-kinetics-selective graphene anode and cation-energy-selective MXene cathode for high-performance capacitive deionization. Energy Storage Materials, 2022, 50, 395-406.	9.5	32
10	Gel polymer dominated ion charging mechanisms within graphene nanochannels. Journal of Power Sources, 2022, 541, 231684.	4.0	14
11	Re-carbon, up-carbon, de-carbon: Plasma-electrified roll-to-roll cleaner production of vertical graphenes and syngas from greenhouse gas mixes. Carbon, 2022, 197, 301-310.	5.4	6
12	Nanoconfined fusion of g-C3N4 within edge-rich vertically oriented graphene hierarchical networks for high-performance photocatalytic hydrogen evolution utilizing superhydrophillic and superaerophobic responses in seawater. Applied Catalysis B: Environmental, 2021, 280, 119461.	10.8	32
13	Multifunctional solar bamboo straw: Multiscale 3D membrane for self-sustained solar-thermal water desalination and purification and thermoelectric waste heat recovery and storage. Carbon, 2021, 171, 359-367.	5.4	44
14	Novel insights into the unique intrinsic sensing behaviors of 2D nanomaterials for volatile organic compounds: from graphene to MoS ₂ and black phosphorous. Journal of Materials Chemistry A, 2021, 9, 14411-14421.	5.2	22
15	Cost-effective, environmentally-sustainable and scale-up synthesis of vertically oriented graphenes from waste oil and its supercapacitor applications. Waste Disposal & Sustainable Energy, 2021, 3, 31-39.	1.1	11
16	More from Less but Precise: Industry-relevant Pseudocapacitance by Atomically-precise Mass-loading MnO2 within Multifunctional MXene Aerogel. Journal of Power Sources, 2021, 492, 229639.	4.0	45
17	Sensing mechanism of the nano-confined space constructed by graphene. Nanotechnology, 2021, 32, 375502.	1.3	2
18	Combinatorial atomistic-to-Al prediction and experimental validation of heating effects in 350 F supercapacitor modules. International Journal of Heat and Mass Transfer, 2021, 171, 121075.	2.5	10

#	Article	IF	CITATIONS
19	Photo-electric capacitive deionization enabled by solar-driven nano-ionics on the edges of plasma-made vertical graphenes. Chemical Engineering Journal, 2021, 422, 130156.	6.6	13
20	Surface-dominant pseudocapacitive supercapacitors with high specific energy and power for energy storage, 2021, 42, 103084.	3.9	22
21	Phase change material enhanced sustained and energy-efficient solar-thermal water desalination. Applied Energy, 2021, 301, 117463.	5.1	35
22	Single Ni supported on Ti3C2O2 for uninterrupted CO2 catalytic hydrogenation to formic acid: A DFT study. Separation and Purification Technology, 2021, 279, 119722.	3.9	14
23	Two-birds-one-stone: multifunctional supercapacitors beyond traditional energy storage. Energy and Environmental Science, 2021, 14, 1854-1896.	15.6	252
24	Rational Design of 2D Manganese Phosphate Hydrate Nanosheets as Pseudocapacitive Electrodes. ACS Energy Letters, 2020, 5, 23-30.	8.8	37
25	Plasma-Made Graphene Nanostructures with Molecularly Dispersed F and Na Sites for Solar Desalination of Oil-Contaminated Seawater with Complete In-Water and In-Air Oil Rejection. ACS Applied Materials & Interfaces, 2020, 12, 38512-38521.	4.0	32
26	Multi-linear antenna microwave plasma assisted large-area growth of 6 × 6 in.2 vertically oriented graphenes with high growth rate. Review of Scientific Instruments, 2020, 91, 076105.	0.6	10
27	Vertical graphene nano-antennas for solar-to-hydrogen energy conversion. Solar Energy, 2020, 208, 379-387.	2.9	13
28	Revealing ion transport in supercapacitors with Sub-2 nm two-dimensional graphene channels. Energy Storage Materials, 2020, 31, 64-71.	9.5	31
29	High-Mass-Loading Porous Ti ₃ C ₂ T _{<i>x</i>} Films for Ultrahigh-Rate Pseudocapacitors. ACS Energy Letters, 2020, 5, 2266-2274.	8.8	88
30	SnO2 nanoparticles incorporated CuO nanopetals on graphene for high-performance room-temperature NO2 sensor. Chemical Physics Letters, 2020, 750, 137485.	1.2	21
31	Solar-Enhanced Plasma-Catalytic Oxidation of Toluene over a Bifunctional Graphene Fin Foam Decorated with Nanofin-like MnO ₂ . ACS Catalysis, 2020, 10, 4420-4432.	5.5	64
32	Highly Thermo-Conductive Three-Dimensional Graphene Aqueous Medium. Nano-Micro Letters, 2020, 12, 138.	14.4	7
33	Three-dimensional hollow urchin α-MnO2 for enhanced catalytic activity towards toluene decomposition in post-plasma catalysis. Chemical Engineering Journal, 2020, 402, 126154.	6.6	67
34	lon Dynamics of Waterâ€inâ€Salt Electrolyte with Organic Solvents in Nanoporous Supercapacitor Electrodes. ChemElectroChem, 2020, 7, 2048-2054.	1.7	6
35	Tuning and monitoring of nitrogen dioxide fixation on Cu decorated graphene: a density functional theory study. Journal of Physics Condensed Matter, 2020, 32, 355001.	0.7	3
36	Hierarchical nanocarbon-MnO2 electrodes for enhanced electrochemical capacitor performance. Energy Storage Materials, 2019, 16, 607-618.	9.5	39

#	Article	IF	CITATIONS
37	Mutualistic decomposition pathway of formaldehyde on O-predosed δ-MnO2. Applied Surface Science, 2019, 498, 143784.	3.1	12
38	Spill-SOS: Self-Pumping Siphon-Capillary Oil Recovery. ACS Nano, 2019, 13, 13027-13036.	7.3	34
39	Solar Energy Conversion: Multifunctional Solar Waterways: Plasmaâ€Enabled Selfâ€Cleaning Nanoarchitectures for Energyâ€Efficient Desalination (Adv. Energy Mater. 30/2019). Advanced Energy Materials, 2019, 9, 1970119.	10.2	6
40	Scalable Production of Integrated Graphene Nanoarchitectures for Ultrafast Solar-Thermal Conversion and Vapor Generation. Matter, 2019, 1, 1017-1032.	5.0	60
41	Beyond lotus: Plasma nanostructuring enables efficient energy and water conversion and use. Nano Energy, 2019, 66, 104125.	8.2	34
42	Density functional theory calculations of NO2 and H2S adsorption on the group 10 transition metal (Ni, Pd and Pt) decorated graphene. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 109, 156-163.	1.3	86
43	Bifunctional sandwich structure of vertically-oriented graphenes and boron nitride nanosheets for thermal management of LEDs and Li-ion battery. Applied Thermal Engineering, 2019, 150, 1016-1027.	3.0	16
44	Multifunctional Solar Waterways: Plasmaâ€Enabled Selfâ€Cleaning Nanoarchitectures for Energyâ€Efficient Desalination. Advanced Energy Materials, 2019, 9, 1901286.	10.2	109
45	Graphene Array-Based Anti-fouling Solar Vapour Gap Membrane Distillation with High Energy Efficiency. Nano-Micro Letters, 2019, 11, 51.	14.4	79
46	Wellâ€Aligned Hierarchical Grapheneâ€Based Electrodes for Pseudocapacitors with Outstanding Lowâ€Temperature Stability. ChemElectroChem, 2019, 6, 2788-2795.	1.7	11
47	Enhanced plasma-catalytic decomposition of toluene over Co–Ce binary metal oxide catalysts with high energy efficiency. RSC Advances, 2019, 9, 7447-7456.	1.7	25
48	Hierarchical, Verticallyâ€Oriented Carbon Nanowall Foam Supercapacitor Using Room Temperature Ionic Liquid Mixture for AC Line Filtering with Ultrahigh Energy Density. ChemElectroChem, 2019, 6, 2123-2123.	1.7	1
49	Superstructure-Enabled Anti-Fouling Membrane for Efficient Photothermal Distillation. ACS Sustainable Chemistry and Engineering, 2019, 7, 20151-20158.	3.2	41
50	Tree-inspired radially aligned, bimodal graphene frameworks for highly efficient and isotropic thermal transport. Nanoscale, 2019, 11, 21249-21258.	2.8	26
51	Emerging nanostructured carbon-based non-precious metal electrocatalysts for selective electrochemical CO ₂ reduction to CO. Journal of Materials Chemistry A, 2019, 7, 25191-25202.	5.2	82
52	Influence of wettability on the electrolyte electrosorption within graphene-like nonconfined and confined space. International Journal of Heat and Mass Transfer, 2019, 133, 416-425.	2.5	27
53	Hierarchical, Verticallyâ€Oriented Carbon Nanowall Foam Supercapacitor using Room Temperature Ionic Liquid Mixture for AC Line Filtering with Ultrahigh Energy Density. ChemElectroChem, 2019, 6, 2167-2173.	1.7	20
54	Design of Supercapacitor Electrodes Using Molecular Dynamics Simulations. Nano-Micro Letters, 2018, 10, 33.	14.4	73

#	Article	IF	CITATIONS
55	Vertically-oriented graphenes supported Mn3O4 as advanced catalysts in post plasma-catalysis for toluene decomposition. Applied Surface Science, 2018, 436, 570-578.	3.1	30
56	Decoration of vertical graphene with tin dioxide nanoparticles for highly sensitive room temperature formaldehyde sensing. Sensors and Actuators B: Chemical, 2018, 256, 1011-1020.	4.0	97
57	<i>Ab initio</i> characterization and experimental validation on the roles of oxygen-containing groups in graphene based formaldehyde sensors. Analyst, The, 2018, 143, 106-115.	1.7	13
58	Tuneable fluidics within graphene nanogaps for water purification and energy storage. Nanoscale Horizons, 2017, 2, 89-98.	4.1	32
59	Wettability of vertically-oriented graphenes with different intersheet distances. RSC Advances, 2017, 7, 2667-2675.	1.7	28
60	Temperature dependence of ion diffusion coefficients in NaCl electrolyte confined within graphene nanochannels. Physical Chemistry Chemical Physics, 2017, 19, 7678-7688.	1.3	52
61	Interfacial charge transport behavior and thermal profiles of vertically oriented grapheneâ€bridged supercapacitors. Physica Status Solidi (B): Basic Research, 2017, 254, 1600804.	0.7	1
62	Graphene nanopetal wire supercapacitors with high energy density and thermal durability. Nano Energy, 2017, 38, 127-136.	8.2	58
63	Reliability of Constant Charge Method for Molecular Dynamics Simulations on EDLCs in Nanometer and Subâ€Nanometer Spaces. ChemElectroChem, 2017, 4, 2486-2493.	1.7	25
64	Molecular Origin of Electric Double-Layer Capacitance at Multilayer Graphene Edges. Journal of Physical Chemistry Letters, 2017, 8, 153-160.	2.1	52
65	Reliability of Constant Charge Method for Molecular Dynamics Simulations on EDLCs in Nanometer and Sub-Nanometer Spaces. ChemElectroChem, 2017, 4, 2427-2427.	1.7	1
66	Towards understanding the effects of van der Waals strengths on the electric double-layer structures and capacitive behaviors. Journal of Power Sources, 2017, 366, 218-225.	4.0	13
67	Interfacial charge transport behavior and thermal profiles of vertically oriented grapheneâ€bridged supercapacitors (Phys. Status Solidi B 6/2017). Physica Status Solidi (B): Basic Research, 2017, 254, 1770232.	0.7	0
68	Substrate Effects in Grapheneâ€Based Electric Double‣ayer Capacitors: The Pivotal Interplays between Ions and Solvents. ChemElectroChem, 2017, 4, 2966-2974.	1.7	10
69	Kinetic-Dominated Charging Mechanism within Representative Aqueous Electrolyte-based Electric Double-Layer Capacitors. Journal of Physical Chemistry Letters, 2017, 8, 3703-3710.	2.1	46
70	Solid-state NMR Study of Ion Adsorption and Charge Storage in Graphene Film Supercapacitor Electrodes. Scientific Reports, 2016, 6, 39689.	1.6	17
71	Edge effects in vertically-oriented graphene based electric double-layer capacitors. Journal of Power Sources, 2016, 324, 309-316.	4.0	75
72	Insights into the effects of solvent properties in graphene based electric double-layer capacitors with organic electrolytes. Journal of Power Sources, 2016, 334, 162-169.	4.0	38

#	Article	IF	CITATIONS
73	High Pseudocapacitive Performance of MnO ₂ Nanowires on Recyclable Electrodes. ChemSusChem, 2016, 9, 1020-1026.	3.6	13
74	Facile Preparation of Nickel Nanoparticle-Modified Carbon Nanotubes with Application as a Nonenzymatic Electrochemical Glucose Sensor. Analytical Letters, 2016, 49, 568-578.	1.0	14
75	Molecular Insights into Aqueous NaCl Electrolytes Confined within Vertically-oriented Graphenes. Scientific Reports, 2015, 5, 14652.	1.6	43
76	Hydrogen Production from Methanol Decomposition in a Gliding Arc Discharge Plasma with High Processing Capacity. Chemistry Letters, 2015, 44, 1315-1317.	0.7	21
77	Covalently interconnected carbon nanotubes for enhanced charge transport in pseudocapacitors. Physica Status Solidi (B): Basic Research, 2015, 252, 2236-2244.	0.7	3
78	PECVD Synthesis of Vertically-Oriented Graphene: Mechanism and Plasma Sources. , 2015, , 19-34.		3
79	Atmospheric PECVD Growth of Vertically-OrientedÂGraphene. , 2015, , 55-65.		0
80	Emerging energy and environmental applications of vertically-oriented graphenes. Chemical Society Reviews, 2015, 44, 2108-2121.	18.7	269
81	Note: Rapid reduction of graphene oxide paper by glow discharge plasma. Review of Scientific Instruments, 2015, 86, 056101.	0.6	8
82	Vertically-Oriented Graphene. , 2015, , .		23
83	Performance of vertically oriented graphene supported platinum–ruthenium bimetallic catalyst for methanol oxidation. Journal of Power Sources, 2015, 273, 530-537.	4.0	56
84	Numerical simulation of hydrodynamic focusing of particles in straight channel flows with the immersed boundary-lattice Boltzmann method. International Journal of Heat and Mass Transfer, 2015, 80, 139-149.	2.5	31
85	PECVD Synthesis of Vertically-OrientedÂGraphene: Precursor and Temperature Effects. , 2015, , 35-54.		2
86	The Properties of Vertically-Oriented Graphene. , 2015, , 11-18.		4
87	Multiâ€pin dc glow discharge <scp>PECVD</scp> for uniform growth of vertically oriented graphene at atmospheric pressure. Physica Status Solidi (B): Basic Research, 2014, 251, 155-161.	0.7	11
88	DC and Microwave Plasmas for Synthesis of Vertically Oriented Graphene. IEEE Transactions on Plasma Science, 2014, 42, 2796-2797.	0.6	1
89	Highly-branched vertically-oriented graphene nanosheets with dense open graphitic edge planes as Pt support for methanol oxidation. Physica Status Solidi (B): Basic Research, 2014, 251, 829-837.	0.7	9
90	Green preparation of reduced graphene oxide for sensing and energy storage applications. Scientific Reports, 2014, 4, 4684.	1.6	433

#	Article	IF	CITATIONS
91	Hierarchical vertically oriented graphene as a catalytic counter electrode in dye-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 188-193.	5.2	85
92	Note: Gliding arc discharges with phase-chopped voltage supply for enhancement of energy efficiency in volatile organic compound decomposition. Review of Scientific Instruments, 2013, 84, 016105.	0.6	9
93	Plasma-enhanced chemical vapor deposition synthesis of vertically oriented graphene nanosheets. Nanoscale, 2013, 5, 5180.	2.8	357
94	Vertically Oriented Graphene Bridging Active‣ayer/Current ollector Interface for Ultrahigh Rate Supercapacitors. Advanced Materials, 2013, 25, 5799-5806.	11.1	270
95	Dimensional Analysis of Detrimental Ozone Generation by Negative Wire-to-Plate Corona Discharge in Both Dry and Humid Air. Ozone: Science and Engineering, 2013, 35, 31-37.	1.4	10
96	Graphene Supercapacitors: Vertically Oriented Graphene Bridging Active-Layer/Current-Collector Interface for Ultrahigh Rate Supercapacitors (Adv. Mater. 40/2013). Advanced Materials, 2013, 25, 5798-5798.	11.1	10
97	One-step fabrication and capacitive behavior of electrochemical double layer capacitor electrodes using vertically-oriented graphene directly grown on metal. Carbon, 2012, 50, 4379-4387.	5.4	162
98	Vertically oriented graphene sheets grown on metallic wires for greener corona discharges: lower power consumption and minimized ozone emission. Energy and Environmental Science, 2011, 4, 2525.	15.6	66
99	Patterning Vertically Oriented Graphene Sheets for Nanodevice Applications. Journal of Physical Chemistry Letters, 2011, 2, 537-542.	2.1	159
100	Carbon Nanotube with Chemically Bonded Graphene Leaves for Electronic and Optoelectronic Applications. Journal of Physical Chemistry Letters, 2011, 2, 1556-1562.	2.1	190
101	Growth of carbon nanowalls at atmospheric pressure for one-step gas sensor fabrication. Nanoscale Research Letters, 2011, 6, 202.	3.1	123
102	Understanding growth of carbon nanowalls at atmospheric pressure using normal glow discharge plasma-enhanced chemical vapor deposition. Carbon, 2011, 49, 1849-1858.	5.4	120
103	Note: Continuous synthesis of uniform vertical graphene on cylindrical surfaces. Review of Scientific Instruments, 2011, 82, 086116.	0.6	8
104	Nanoscale Discharge Electrode for Minimizing Ozone Emission from Indoor Corona Devices. Environmental Science & Technology, 2010, 44, 6337-6342.	4.6	32
105	Nitrogen dioxide formation in the gliding arc discharge-assisted decomposition of volatile organic compounds. Journal of Hazardous Materials, 2009, 166, 1210-1216.	6.5	38
106	Scale-up analysis and development of gliding arc discharge facility for volatile organic compounds decomposition. Journal of Hazardous Materials, 2008, 155, 494-501.	6.5	37
107	Simultaneous removal of ethyl acetate, benzene and toluene with gliding arc gas discharge. Journal of Zhejiang University: Science A, 2008, 9, 695-701.	1.3	9
108	The Dependence of Gliding Arc Gas Discharge Characteristics on Reactor Geometrical Configuration. Plasma Chemistry and Plasma Processing, 2007, 27, 691-700.	1.1	15

#	Article	IF	CITATIONS
109	Hierarchical Petal-on-Petal MnO ₂ /Vertical Graphene Foam for Postplasma Catalytic Decomposition of Toluene with High Efficiency and Ultralow Pressure Drop. Industrial & Engineering Chemistry Research, 0, , .	1.8	3