
Abiodun David Ogunniyi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2063908/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Molecular Mechanism for Bacterial Susceptibility to Zinc. PLoS Pathogens, 2011, 7, e1002357.	4.7	387
2	A random six-phase switch regulates pneumococcal virulence via global epigenetic changes. Nature Communications, 2014, 5, 5055.	12.8	264
3	Development of a Vaccine against Invasive Pneumococcal Disease Based on Combinations of Virulence Proteins of Streptococcus pneumoniae. Infection and Immunity, 2007, 75, 350-357.	2.2	168
4	Protection against Streptococcus pneumoniae Elicited by Immunization with Pneumolysin and CbpA. Infection and Immunity, 2001, 69, 5997-6003.	2.2	134
5	CCR2 defines in vivo development and homing of IL-23-driven GM-CSF-producing Th17 cells. Nature Communications, 2015, 6, 8644.	12.8	117
6	Differential expression of key pneumococcal virulence genes in vivo. Microbiology (United Kingdom), 2006, 152, 305-311.	1.8	113
7	Pneumococcal histidine triad proteins are regulated by the Zn ²⁺ â€dependent repressor AdcR and inhibit complement deposition through the recruitment of complement factor H. FASEB Journal, 2009, 23, 731-738.	0.5	111
8	<scp>AdcA</scp> and <scp>AdcAll</scp> employ distinct zinc acquisition mechanisms and contribute additively to zinc homeostasis in <scp><i>S</i></scp> <i>treptococcus pneumoniae</i> . Molecular Microbiology, 2014, 91, 834-851.	2.5	108
9	Comparative GO: A Web Application for Comparative Gene Ontology and Gene Ontology-Based Gene Selection in Bacteria. PLoS ONE, 2013, 8, e58759.	2.5	97
10	Central Role of Manganese in Regulation of Stress Responses, Physiology, and Metabolism in <i>Streptococcus pneumoniae</i> . Journal of Bacteriology, 2010, 192, 4489-4497.	2.2	95
11	Contributions of Pneumolysin, Pneumococcal Surface Protein A (PspA), and PspC to Pathogenicity of Streptococcus pneumoniae D39 in a Mouse Model. Infection and Immunity, 2007, 75, 1843-1851.	2.2	86
12	c-di-GMP is an effective immunomodulator and vaccine adjuvant against pneumococcal infection. Vaccine, 2008, 26, 4676-4685.	3.8	75
13	Streptococcus pneumoniae triggers progression of pulmonary fibrosis through pneumolysin. Thorax, 2015, 70, 636-646.	5.6	71
14	Extracellular Matrix Formation Enhances the Ability of Streptococcus pneumoniae to Cause Invasive Disease. PLoS ONE, 2011, 6, e19844.	2.5	61
15	Identification of Genes That Contribute to the Pathogenesis of Invasive Pneumococcal Disease by <i>In Vivo</i> Transcriptomic Analysis. Infection and Immunity, 2012, 80, 3268-3278.	2.2	61
16	The Effects of Methionine Acquisition and Synthesis on Streptococcus Pneumoniae Growth and Virulence. PLoS ONE, 2013, 8, e49638.	2.5	60
17	Pneumococcal Virulence Gene Expression and Host Cytokine Profiles during Pathogenesis of Invasive Disease. Infection and Immunity, 2008, 76, 646-657.	2.2	59
18	Identification of a novel pneumococcal vaccine antigen preferentially expressed during meningitis in mice. Journal of Clinical Investigation, 2012, 122, 2208-2220.	8.2	50

#	Article	IF	CITATIONS
19	Polyhistidine triad proteins of pathogenic streptococci. Trends in Microbiology, 2012, 20, 485-493.	7.7	47
20	A Variable Region within the Genome of Streptococcus pneumoniae Contributes to Strain-Strain Variation in Virulence. PLoS ONE, 2011, 6, e19650.	2.5	43
21	Evaluation of robenidine analog NCL195 as a novel broad-spectrum antibacterial agent. PLoS ONE, 2017, 12, e0183457.	2.5	40
22	Pneumolysin with Low Hemolytic Activity Confers an Early Growth Advantage to Streptococcus pneumoniae in the Blood. Infection and Immunity, 2011, 79, 4122-4130.	2.2	39
23	Intranasal vaccination with Î ³ -irradiated <i>Streptococcus pneumoniae</i> whole-cell vaccine provides serotype-independent protection mediated by B-cells and innate IL-17 responses. Clinical Science, 2016, 130, 697-710.	4.3	39
24	Hepatic induction of cholesterol biosynthesis reflects a remote adaptive response to pneumococcal pneumonia. FASEB Journal, 2012, 26, 2424-2436.	0.5	38
25	Evaluation of a series of 2-napthamide derivatives as inhibitors of the drug efflux pump AcrB for the reversal of antimicrobial resistance. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 733-739.	2.2	37
26	Surface Association of Pht Proteins of Streptococcus pneumoniae. Infection and Immunity, 2013, 81, 3644-3651.	2.2	33
27	Vaccination against Streptococcus pneumoniae Using Truncated Derivatives of Polyhistidine Triad Protein D. PLoS ONE, 2013, 8, e78916.	2.5	30
28	Robenidine Analogues as Gram-Positive Antibacterial Agents. Journal of Medicinal Chemistry, 2016, 59, 2126-2138.	6.4	29
29	Genomic characterization of coagulase-negative staphylococci including methicillin-resistant Staphylococcus sciuri causing bovine mastitis. Veterinary Microbiology, 2018, 219, 17-22.	1.9	29
30	Deteriorating Pneumococcal-Specific B-Cell Memory in Minimally Symptomatic African Children With HIV Infection. Journal of Infectious Diseases, 2011, 204, 534-543.	4.0	28
31	Contribution of a Genomic Accessory Region Encoding a Putative Cellobiose Phosphotransferase System to Virulence of Streptococcus pneumoniae. PLoS ONE, 2012, 7, e32385.	2.5	27
32	Modulation of Adherence, Invasion, and Tumor Necrosis Factor Alpha Secretion during the Early Stages of Infection by Streptococcus pneumoniae ClpL. Infection and Immunity, 2007, 75, 2996-3005.	2.2	26
33	Contribution of Serotype and Genetic Background to Virulence of Serotype 3 and Serogroup 11 Pneumococcal Isolates. Infection and Immunity, 2011, 79, 4839-4849.	2.2	25
34	A Transcription Factor Contributes to Pathogenesis and Virulence in Streptococcus pneumoniae. PLoS ONE, 2013, 8, e70862.	2.5	25
35	A functional genomics catalogue of activated transcription factors during pathogenesis of pneumococcal disease. BMC Genomics, 2014, 15, 769.	2.8	25
36	Repurposing lonophores as novel antimicrobial agents for the treatment of bovine mastitis caused by Gramâ€positive pathogens. Journal of Veterinary Pharmacology and Therapeutics, 2018, 41, 746-754.	1.3	25

#	Article	IF	CITATIONS
37	Efficacy evaluation of a new water sanitizer for increasing the shelf life of Southern Australian King George Whiting and Tasmanian Atlantic Salmon fillets. Food Microbiology, 2017, 68, 51-60.	4.2	24
38	Bioluminescent murine models of bacterial sepsis and scald wound infections for antimicrobial efficacy testing. PLoS ONE, 2018, 13, e0200195.	2.5	23
39	Disinfection options for irrigation water: Reducing the risk of fresh produce contamination with human pathogens. Critical Reviews in Environmental Science and Technology, 2020, 50, 2144-2174.	12.8	22
40	In vitro Antimicrobial Activity of Robenidine, Ethylenediaminetetraacetic Acid and Polymyxin B Nonapeptide Against Important Human and Veterinary Pathogens. Frontiers in Microbiology, 2019, 10, 837.	3.5	21
41	Enhanced protective responses to a serotype-independent pneumococcal vaccine when combined with an inactivated influenza vaccine. Clinical Science, 2017, 131, 169-180.	4.3	20
42	FMS-Like Tyrosine Kinase 3 Ligand Treatment of Mice Aggravates Acute Lung Injury in Response to Streptococcus pneumoniae: Role of Pneumolysin. Infection and Immunity, 2012, 80, 4281-4290.	2.2	19
43	Comparative antibacterial activities of neutral electrolyzed oxidizing water and other chlorine-based sanitizers. Scientific Reports, 2019, 9, 19955.	3.3	19
44	Characterization of Pneumococcal Genes Involved in Bloodstream Invasion in a Mouse Model. PLoS ONE, 2015, 10, e0141816.	2.5	19
45	In vitro synergistic activity of NCL195 in combination with colistin against Gram-negative bacterial pathogens. International Journal of Antimicrobial Agents, 2021, 57, 106323.	2.5	16
46	In vitro Activity of Robenidine Analog NCL195 in Combination With Outer Membrane Permeabilizers Against Gram-Negative Bacterial Pathogens and Impact on Systemic Gram-Positive Bacterial Infection in Mice. Frontiers in Microbiology, 2020, 11, 1556.	3.5	14
47	Impairment of Pneumococcal Antigen Specific Isotype-Switched Igg Memory B-Cell Immunity in HIV Infected Malawian Adults. PLoS ONE, 2013, 8, e78592.	2.5	11
48	Gramâ€Positive and Gramâ€Negative Antibiotic Activity of Asymmetric and Monomeric Robenidine Analogues. ChemMedChem, 2018, 13, 2573-2580.	3.2	11
49	A pH-neutral electrolyzed oxidizing water significantly reduces microbial contamination of fresh spinach leaves. Food Microbiology, 2021, 93, 103614.	4.2	11
50	Semisynthesis and biological evaluation of a focused library of unguinol derivatives as next-generation antibiotics. Organic and Biomolecular Chemistry, 2021, 19, 1022-1036.	2.8	11
51	Comparison of Two Transmission Electron Microscopy Methods to Visualize Drug-Induced Alterations of Gram-Negative Bacterial Morphology. Antibiotics, 2021, 10, 307.	3.7	10
52	Antimicrobial Action and Reversal of Resistance in MRSA by Difluorobenzamide Derivatives Targeted at FtsZ. Antibiotics, 2020, 9, 873.	3.7	8
53	Epitope analysis of the FanC subunit protein of the K99 (F5) fimbriae of enterotoxigenicEscherichia coliusing a recombinant fusion technique. FEMS Immunology and Medical Microbiology, 2002, 34, 23-31.	2.7	7
54	Delayed reconstitution of B cell immunity to pneumococcus in HIV-infected Malawian children on antiretroviral therapy. Journal of Infection, 2015, 70, 616-623.	3.3	7

#	Article	IF	CITATIONS
55	Decontamination of aerosolised bacteria from a pig farm environment using a pH neutral electrochemically activated solution (Ecas4 anolyte). PLoS ONE, 2019, 14, e0222765.	2.5	7
56	Neutral electrolyzed oxidizing water is effective for pre-harvest decontamination of fresh produce. Food Microbiology, 2021, 93, 103610.	4.2	7
57	Protective role of PhtD and its amino and carboxyl fragments against pneumococcal sepsis. Vaccine, 2021, 39, 3626-3632.	3.8	7
58	Discovery of 4,6â€bis(2â€((E)â€benzylidene)hydrazinyl)pyrimidinâ€2â€Amine with Antibiotic Activity. ChemistryOpen, 2019, 8, 896-907.	1.9	6
59	Repurposing of the Fasciolicide Triclabendazole to Treat Infections Caused by Staphylococcus spp. and Vancomycin-Resistant Enterococci. Microorganisms, 2021, 9, 1697.	3.6	6
60	Insertional mutation of orfD of the DCW cluster of Streptococcus pneumoniae attenuates virulence. Microbial Pathogenesis, 1999, 27, 337-348.	2.9	5
61	The Pneumococcal Alpha-Glycerophosphate Oxidase Enhances Nasopharyngeal Colonization through Binding to Host Glycoconjugates. EBioMedicine, 2017, 18, 236-243.	6.1	5
62	Effects of an Eco-Friendly Sanitizing Wash on Spinach Leaf Bacterial Community Structure and Diversity. Applied Sciences (Switzerland), 2020, 10, 2986.	2.5	4
63	Vaccine Potential of Pneumococcal Proteins. , 2015, , 59-78.		3
64	Proteomic comparisons of opaque and transparent variants of Streptococcus pneumoniae by two dimensional-differential gel electrophoresis. Scientific Reports, 2017, 7, 2453.	3.3	3
65	Allicin prevents the formation of Proteus-induced urinary crystals and the blockage of catheter in a bladder model in vitro. Microbial Pathogenesis, 2019, 132, 293-301.	2.9	3
66	Impact of a Novel Anticoccidial Analogue on Systemic Staphylococcus aureus Infection in a Bioluminescent Mouse Model. Antibiotics, 2022, 11, 65.	3.7	2
67	Evicting the Pneumococcus from Its Nasopharyngeal Lodgings. Cell Host and Microbe, 2011, 9, 89-91.	11.0	1
68	Evaluation of Benzguinols as Next-Generation Antibiotics for the Treatment of Multidrug-Resistant Bacterial Infections. Antibiotics, 2021, 10, 727.	3.7	1
69	Regulation of Pneumococcal Surface Proteins and Capsule. , 0, , 190-208.		0