List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/206375/publications.pdf Version: 2024-02-01

STEEAN FESKE

#	Article	lF	CITATIONS
1	A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature, 2006, 441, 179-185.	13.7	2,016
2	Orail is an essential pore subunit of the CRAC channel. Nature, 2006, 443, 230-233.	13.7	1,223
3	Phosphoenolpyruvate Is a Metabolic Checkpoint of Anti-tumor T Cell Responses. Cell, 2015, 162, 1217-1228.	13.5	1,044
4	Calcium signalling in lymphocyte activation and disease. Nature Reviews Immunology, 2007, 7, 690-702.	10.6	895
5	Gene regulation mediated by calcium signals in T lymphocytes. Nature Immunology, 2001, 2, 316-324.	7.0	544
6	Ion Channels in Innate and Adaptive Immunity. Annual Review of Immunology, 2015, 33, 291-353.	9.5	541
7	Dual functions for the endoplasmic reticulum calcium sensors STIM1 and STIM2 in T cell activation and tolerance. Nature Immunology, 2008, 9, 432-443.	7.0	528
8	Calcineurin imposes T cell unresponsiveness through targeted proteolysis of signaling proteins. Nature Immunology, 2004, 5, 255-265.	7.0	489
9	<i>STIM1</i> Mutation Associated with a Syndrome of Immunodeficiency and Autoimmunity. New England Journal of Medicine, 2009, 360, 1971-1980.	13.9	459
10	Diseases caused by mutations in <i>ORAI1</i> and <i>STIM1</i> . Annals of the New York Academy of Sciences, 2015, 1356, 45-79.	1.8	367
11	lon channels and transporters in lymphocyte function and immunity. Nature Reviews Immunology, 2012, 12, 532-547.	10.6	364
12	A genome-wide Drosophila RNAi screen identifies DYRK-family kinases as regulators of NFAT. Nature, 2006, 441, 646-650.	13.7	343
13	Biochemical and Functional Characterization of Orai Proteins. Journal of Biological Chemistry, 2007, 282, 16232-16243.	1.6	340
14	ORAI1 deficiency and lack of store-operated Ca2+ entry cause immunodeficiency, myopathy, and ectodermal dysplasia. Journal of Allergy and Clinical Immunology, 2009, 124, 1311-1318.e7.	1.5	289
15	Hair Loss and Defective T- and B-Cell Function in Mice Lacking ORAI1. Molecular and Cellular Biology, 2008, 28, 5209-5222.	1.1	275
16	Signalling to transcription: Store-operated Ca2+ entry and NFAT activation in lymphocytes. Cell Calcium, 2007, 42, 145-156.	1.1	273
17	ORAl1 and STIM1 deficiency in human and mice: roles of storeâ€operated Ca ²⁺ entry in the immune system and beyond. Immunological Reviews, 2009, 231, 189-209.	2.8	271
18	Whole-exome sequencing-based discovery of STIM1 deficiency in a child with fatal classic Kaposi sarcoma. Journal of Experimental Medicine, 2010, 207, 2307-2312.	4.2	268

#	Article	IF	CITATIONS
19	Perforin Triggers a Plasma Membrane-Repair Response that Facilitates CTL Induction of Apoptosis. Immunity, 2005, 23, 249-262.	6.6	260
20	Reduced Synaptic STIM2 Expression and Impaired Store-Operated Calcium Entry Cause Destabilization of Mature Spines in Mutant Presenilin Mice. Neuron, 2014, 82, 79-93.	3.8	229
21	A minimal regulatory domain in the C terminus of STIM1 binds to and activates ORAI1 CRAC channels. Biochemical and Biophysical Research Communications, 2009, 385, 49-54.	1.0	221
22	A severe defect in CRAC Ca2+ channel activation and altered K+ channel gating in T cells from immunodeficient patients. Journal of Experimental Medicine, 2005, 202, 651-662.	4.2	220
23	Store-Operated Ca2+ Entry Controls Clonal Expansion of T Cells through Metabolic Reprogramming. Immunity, 2017, 47, 664-679.e6.	6.6	212
24	CRAC channelopathies. Pflugers Archiv European Journal of Physiology, 2010, 460, 417-435.	1.3	197
25	ORAI1-mediated calcium influx is required for human cytotoxic lymphocyte degranulation and target cell lysis. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 3324-3329.	3.3	181
26	Ca2+/calcineurin signalling in cells of the immune system. Biochemical and Biophysical Research Communications, 2003, 311, 1117-1132.	1.0	162
27	Immunodeficiency due to mutations in ORAI1 and STIM1. Clinical Immunology, 2010, 135, 169-182.	1.4	159
28	ORAI2 modulates store-operated calcium entry and T cell-mediated immunity. Nature Communications, 2017, 8, 14714.	5.8	158
29	Antiviral and Regulatory T Cell Immunity in a Patient with Stromal Interaction Molecule 1 Deficiency. Journal of Immunology, 2012, 188, 1523-1533.	0.4	156
30	The Cell Surface Receptor SLAM Controls T Cell and Macrophage Functions. Journal of Experimental Medicine, 2004, 199, 1255-1264.	4.2	153
31	NFAT control of immune function: New Frontiers for an Abiding Trooper. F1000Research, 2018, 7, 260.	0.8	139
32	Store-Operated Ca2+ Entry through ORAI1 Is Critical for T Cell-Mediated Autoimmunity and Allograft Rejection. Journal of Immunology, 2010, 185, 5845-5858.	0.4	133
33	Store-Operated Ca 2+ Entry Controls Induction of Lipolysis and the Transcriptional Reprogramming to Lipid Metabolism. Cell Metabolism, 2017, 25, 698-712.	7.2	131
34	Store-Operated Ca2+ Entry (SOCE) Regulates Melanoma Proliferation and Cell Migration. PLoS ONE, 2014, 9, e89292.	1.1	130
35	The Duration of Nuclear Residence of NFAT Determines the Pattern of Cytokine Expression in Human SCID T Cells. Journal of Immunology, 2000, 165, 297-305.	0.4	124
36	Store-Operated CRAC Channels Regulate Gene Expression and Proliferation in Neural Progenitor Cells. Journal of Neuroscience, 2014, 34, 9107-9123.	1.7	123

#	Article	lF	CITATIONS
37	Severe combined immunodeficiency due to defective binding of the nuclear factor of activated T cells in T lymphocytes of two male siblings. European Journal of Immunology, 1996, 26, 2119-2126.	1.6	119
38	Protein Kinase C-induced Phosphorylation of Orai1 Regulates the Intracellular Ca2+ Level via the Store-operated Ca2+ Channel. Journal of Biological Chemistry, 2010, 285, 25720-25730.	1.6	119
39	CRAC Channels and Calcium Signaling in T Cell-Mediated Immunity. Trends in Immunology, 2020, 41, 878-901.	2.9	118
40	Polarized but Differential Localization and Recruitment of STIM1, Orai1 and TRPC Channels in Secretory Cells. Traffic, 2011, 12, 232-245.	1.3	116
41	Ribosome-free Terminals of Rough ER Allow Formation of STIM1 Puncta and Segregation of STIM1 from IP3 Receptors. Current Biology, 2009, 19, 1648-1653.	1.8	114
42	R93W mutation in Orai1 causes impaired calcium influx in platelets. Blood, 2009, 113, 675-678.	0.6	113
43	Tâ€cellâ€specific deletion of STIM1 and STIM2 protects mice from EAE by impairing the effector functions of Th1 and Th17 cells. European Journal of Immunology, 2010, 40, 3028-3042.	1.6	111
44	Agonist-Selected T Cell Development Requires Strong T Cell Receptor Signaling and Store-Operated Calcium Entry. Immunity, 2013, 38, 881-895.	6.6	106
45	Emerging roles of store-operated Ca ²⁺ entry through STIM and ORAI proteins in immunity, hemostasis and cancer. Channels, 2013, 7, 379-391.	1.5	105
46	Ca2+ Signaling but Not Store-Operated Ca2+ Entry Is Required for the Function of Macrophages and Dendritic Cells. Journal of Immunology, 2015, 195, 1202-1217.	0.4	105
47	Regulation of lymphocyte function by ORAI and STIM proteins in infection and autoimmunity. Journal of Physiology, 2012, 590, 4157-4167.	1.3	103
48	Store-Operated Ca 2+ Entry in Follicular T Cells Controls Humoral Immune Responses and Autoimmunity. Immunity, 2016, 44, 1350-1364.	6.6	97
49	Immunodeficiency due to defects in storeâ€operated calcium entry. Annals of the New York Academy of Sciences, 2011, 1238, 74-90.	1.8	95
50	Calcium Signaling Controls Pathogenic Th17 Cell-Mediated Inflammation by Regulating Mitochondrial Function. Cell Metabolism, 2019, 29, 1104-1118.e6.	7.2	94
51	<scp>STIM</scp> 1 and <scp>STIM</scp> 2â€mediated Ca ²⁺ influx regulates antitumour immunity by <scp>CD</scp> 8 ⁺ T cells. EMBO Molecular Medicine, 2013, 5, 1311-1321.	3.3	86
52	Molecular regulation of CRAC channels and their role in lymphocyte function. Cellular and Molecular Life Sciences, 2013, 70, 2637-2656.	2.4	84
53	STIM2 enhances receptor-stimulated Ca ²⁺ signaling by promoting recruitment of STIM1 to the endoplasmic reticulum–plasma membrane junctions. Science Signaling, 2015, 8, ra3.	1.6	83
54	Essential role of Orai1 store-operated calcium channels in lactation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5827-5832.	3.3	82

#	Article	IF	CITATIONS
55	Ion channelopathies of the immune system. Current Opinion in Immunology, 2018, 52, 39-50.	2.4	77
56	CRAC channels and disease – From human CRAC channelopathies and animal models to novel drugs. Cell Calcium, 2019, 80, 112-116.	1.1	75
57	Physiological and pathophysiological functions of SOCE in the immune system. Frontiers in Bioscience - Elite, 2012, E4, 2253-2268.	0.9	72
58	B Cell Receptor-Mediated Calcium Signaling Is Impaired in B Lymphocytes of Type Ia Patients with Common Variable Immunodeficiency. Journal of Immunology, 2010, 184, 7305-7313.	0.4	71
59	Store-operated Ca2+ entry regulates Ca2+-activated chloride channels and eccrine sweat gland function. Journal of Clinical Investigation, 2016, 126, 4303-4318.	3.9	68
60	Calpain 2 Controls Turnover of LFA-1 Adhesions on Migrating T Lymphocytes. PLoS ONE, 2010, 5, e15090.	1.1	67
61	ORAI1 mutations abolishing store-operated Ca2+ entry cause anhidrotic ectodermal dysplasia with immunodeficiency. Journal of Allergy and Clinical Immunology, 2018, 142, 1297-1310.e11.	1.5	62
62	STIM1 and STIM2 protein deficiency in T lymphocytes underlies development of the exocrine gland autoimmune disease, SjĶgren's syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14544-14549.	3.3	61
63	ORAI1, STIM1/2, and RYR1 shape subsecond Ca ²⁺ microdomains upon T cell activation. Science Signaling, 2018, 11, .	1.6	59
64	Defective nuclear translocation of nuclear factor of activated T cells and extracellular signal-regulated kinase underlies deficient IL-2 gene expression in Wiskott-Aldrich syndrome. Journal of Allergy and Clinical Immunology, 2005, 116, 1364-1371.	1.5	56
65	STIM1 controls T cell–mediated immune regulation and inflammation in chronic infection. Journal of Clinical Investigation, 2015, 125, 2347-2362.	3.9	53
66	Missense mutation in immunodeficient patients shows the multifunctional roles of coiled-coil domain 3 (CC3) in STIM1 activation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6206-6211.	3.3	52
67	Ins <i>P</i> 3 receptors and Orai channels in pancreatic acinar cells: co-localization and its consequences. Biochemical Journal, 2011, 436, 231-239.	1.7	50
68	CD4+ and CD8+ T cell–dependent antiviral immunity requires STIM1 and STIM2. Journal of Clinical Investigation, 2014, 124, 4549-4563.	3.9	50
69	STIM1 Phosphorylation at Y361 Recruits Orai1 to STIM1 Puncta and Induces Ca2+ Entry. Scientific Reports, 2017, 7, 42758.	1.6	48
70	Physiological and pathophysiological functions of SOCE in the immune system. Frontiers in Bioscience - Elite, 2012, E4, 2253.	0.9	47
71	Store-operated Ca2+ entry controls ameloblast cell function and enamel development. JCI Insight, 2017, 2, e91166.	2.3	46
72	Selective ORAI1 Inhibition Ameliorates Autoimmune Central Nervous System Inflammation by Suppressing Effector but Not Regulatory T Cell Function. Journal of Immunology, 2016, 196, 573-585.	0.4	45

#	Article	IF	CITATIONS
73	Dental enamel cells express functional SOCE channels. Scientific Reports, 2015, 5, 15803.	1.6	42
74	Differential regulation of Ca ²⁺ influx by ORAI channels mediates enamel mineralization. Science Signaling, 2019, 12, .	1.6	42
75	Tissue resident and follicular Treg cell differentiation is regulated by CRAC channels. Nature Communications, 2019, 10, 1183.	5.8	42
76	The volume-regulated anion channel LRRC8C suppresses T cell function by regulating cyclic dinucleotide transport and STING–p53 signaling. Nature Immunology, 2022, 23, 287-302.	7.0	40
77	Conformational dynamics of STIM1 activation. Nature Structural and Molecular Biology, 2013, 20, 918-919.	3.6	35
78	Ca ²⁺ transport and signalling in enamel cells. Journal of Physiology, 2017, 595, 3015-3039.	1.3	35
79	Two types of functionally distinct Ca2+ stores in hippocampal neurons. Nature Communications, 2019, 10, 3223.	5.8	34
80	Interference with <scp>C</scp> a ²⁺ release activated <scp>C</scp> a ²⁺ (<scp>CRAC</scp>) channel function delays <scp>T</scp> â€cell arrest in vivo. European Journal of Immunology, 2013, 43, 3343-3354.	1.6	29
81	Calcium regulation of T cell metabolism. Current Opinion in Physiology, 2020, 17, 207-223.	0.9	29
82	STIM2 targets Orai1/STIM1 to the AKAP79 signaling complex and confers coupling of Ca ²⁺ entry with NFAT1 activation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 16638-16648.	3.3	29
83	A novel mutation in ORAI1 presenting with combined immunodeficiency and residual T-cell function. Journal of Allergy and Clinical Immunology, 2015, 136, 479-482.e1.	1.5	28
84	Functional Interrogation of Primary Human T Cells via CRISPR Genetic Editing. Journal of Immunology, 2018, 201, 1586-1598.	0.4	27
85	STIM1â€mediated calcium influx controls antifungal immunity and the metabolic function of nonâ€pathogenic Th17 cells. EMBO Molecular Medicine, 2020, 12, e11592.	3.3	26
86	Impaired NFAT Regulation and its Role in a Severe Combined Immunodeficiency. Immunobiology, 2000, 202, 134-150.	0.8	23
87	Hemophagocytic lymphohistiocytosis as presenting manifestation of profound combined immunodeficiency due to an ORAI1 mutation. Journal of Allergy and Clinical Immunology, 2017, 140, 1721-1724.	1.5	23
88	Disrupting Roquin-1 interaction with Regnase-1 induces autoimmunity and enhances antitumor responses. Nature Immunology, 2021, 22, 1563-1576.	7.0	22
89	Cardiomyocyte-Specific STIM1 (Stromal Interaction Molecule 1) Depletion in the Adult Heart Promotes the Development of Arrhythmogenic Discordant Alternans. Circulation: Arrhythmia and Electrophysiology, 2019, 12, e007382.	2.1	21
90	Regulation of epithelial ion transport in exocrine glands by store-operated Ca2+ entry. Cell Calcium, 2017, 63, 53-59.	1.1	20

#	Article	IF	CITATIONS
91	STIM1 and STIM2 Mediate Cancer-Induced Inflammation in T Cell Acute Lymphoblastic Leukemia. Cell Reports, 2018, 24, 3045-3060.e5.	2.9	20
92	A Molecular Dissection of Lymphocyte Unresponsiveness Induced by Sustained Calcium Signalling. Novartis Foundation Symposium, 2008, , 165-179.	1.2	19
93	Ca2+ Influx in T Cells: How Many Ca2+ Channels?. Frontiers in Immunology, 2013, 4, 99.	2.2	19
94	Cavβ1 regulates T cell expansion and apoptosis independently of voltage-gated Ca2+ channel function. Nature Communications, 2022, 13, 2033.	5.8	18
95	The Ca2+–calcineurin–NFAT signalling pathway. New Comprehensive Biochemistry, 2007, 41, 365-401.	0.1	16
96	Preserved effector functions of human ORAI1- and STIM1-deficient neutrophils. Journal of Allergy and Clinical Immunology, 2016, 137, 1587-1591.e7.	1.5	16
97	A molecular dissection of lymphocyte unresponsiveness induced by sustained calcium signalling. Novartis Foundation Symposium, 2005, 267, 165-74; discussion 174-9.	1.2	16
98	STIM1 Deficiency Results In Impaired Platelet Procoagulant Activity and Protection From Arterial Thrombosis. Blood, 2010, 116, 485-485.	0.6	13
99	Eye on ion channels in immune cells. Science Signaling, 2019, 12, .	1.6	11
100	A 10-aa-long sequence in SLP-76 upstream of the Gads binding site is essential for T cell development and function. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 19063-19068.	3.3	9
101	Store-operated Ca2+ entry in primary murine lung fibroblasts is independent of classical transient receptor potential (TRPC) channels and contributes to cell migration. Scientific Reports, 2020, 10, 6812.	1.6	9
102	Skin Associated Staphylococcus Aureus Contributes to Disease Progression in CTCL. Blood, 2019, 134, 659-659.	0.6	5
103	To B, or not to B: Is calcium the answer?. Cell Calcium, 2020, 90, 102227.	1.1	4
104	Crac Channel Deletion in Leukemic Cells Delays Progression of Leukemia and Prolongs Survival of Mice with Notch-1-Induced T-Cell Acute Lymphoblastic Leukemia. Blood, 2015, 126, 1433-1433.	0.6	4
105	Calcium Signals In Lymphocyte Activation And Disease. Biophysical Journal, 2009, 96, 193a.	0.2	2
106	16th FASEB Science Research Conference on Calcium and Cell Function: Calcium channels and signaling in health and disease. Journal of General Physiology, 2016, 148, 359-365.	0.9	0
107	Seeing is believing: Visualizing immune cells and calcium signals at different stages of neuroinflammation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20360-20362.	3.3	0
108	Straight from the channel's mouth: AKAP79 links Ca2+ influx through ORAI1 to NFAT activation. Cell Calcium, 2021, 99, 102459.	1.1	0

#	Article	IF	CITATIONS
109	R93W Mutation in Orai1 Causes Impaired Calcium Influx in Platelets Blood, 2008, 112, 1838-1838.	0.6	0
110	Abstract 5259: Role of Orai1 and STIM1 in store-operated Ca2+ entry and cell migration in melanoma. , 2011, , .		0
111	Immune System. , 2012, , 271-299.		0
112	Abstract 1864: Role of store-operated Ca2+ entry in proliferation and cell cycle in melanoma. , 2012, , .		0
113	Differential role for STIM1 in the regulation of vascular function (851.7). FASEB Journal, 2014, 28, 851.7.	0.2	0
114	CRAC channels as critical regulators of immunity to infection and inflammation. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, SY75-2.	0.0	0