Judy Ann Libra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2063522/publications.pdf Version: 2024-02-01

LUDY ANN LIRDA

#	Article	IF	CITATIONS
1	Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels, 2011, 2, 71-106.	1.4	1,247
2	New Evidence for High Sorption Capacity of Hydrochar for Hydrophobic Organic Pollutants. Environmental Science & Technology, 2016, 50, 13274-13282.	4.6	142
3	Hydrothermal Carbonization: Modeling, Final Properties Design and Applications: A Review. Energies, 2018, 11, 216.	1.6	134
4	Decolorization of reactive dyes by the white rot fungusTrametes versicolor in sequencing batch reactors. Biotechnology and Bioengineering, 2001, 75, 313-321.	1.7	128
5	Removal of antimony (III) and cadmium (II) from aqueous solution using animal manure-derived hydrochars and pyrochars. Bioresource Technology, 2017, 234, 77-85.	4.8	122
6	Effects of Biomass Types and Carbonization Conditions on the Chemical Characteristics of Hydrochars. Journal of Agricultural and Food Chemistry, 2013, 61, 9401-9411.	2.4	115
7	Sorption of four hydrophobic organic contaminants by biochars derived from maize straw, wood dust and swine manure at different pyrolytic temperatures. Chemosphere, 2016, 144, 285-291.	4.2	113
8	Two stage biological treatment of a diazo reactive textile dye and the fate of the dye metabolites. Chemosphere, 2004, 56, 167-180.	4.2	103
9	Mechanism of Decolorization of Azo Dyes in Anaerobic Mixed Culture. Journal of Environmental Engineering, ASCE, 2001, 127, 844-849.	0.7	92
10	Competition strategies for the decolorization of a textile-reactive dye with the white-rot fungi Trametes versicolor under non-sterile conditions. Biotechnology and Bioengineering, 2003, 82, 736-744.	1.7	92
11	Mechanism and kinetic model for the decolorization of the azo dye Reactive Black 5 by hydrogen peroxide and UV radiation. Chemosphere, 2003, 52, 1069-1077.	4.2	90
12	Oxidation resistance of biochars as a function of feedstock and pyrolysis condition. Science of the Total Environment, 2018, 616-617, 335-344.	3.9	64
13	Late Quaternary evolution of rivers, lakes and peatlands in northeast Germany reflecting past climatic and human impact – an overview. E&G Quaternary Science Journal, 2012, 61, 103-132.	0.2	60
14	Reduction of azo dyes by desulfovibrio desulfuricans. Water Science and Technology, 2000, 41, 15-22.	1.2	57
15	Variation in sorption of propiconazole with biochars: The effect of temperature, mineral, molecular structure, and nano-porosity. Chemosphere, 2016, 142, 56-63.	4.2	48
16	Combination of biological and chemical processes for the treatment of textile wastewater containing reactive dyes. Journal of Chemical Technology and Biotechnology, 2003, 78, 1149-1156.	1.6	41
17	Combustion Behavior of Animal-Manure-Based Hydrochar and Pyrochar. ACS Sustainable Chemistry and Engineering, 2019, 7, 470-478.	3.2	41
18	Cost analysis for the degradation of highly concentrated textile dye wastewater with chemical oxidation H2O2/UV and biological treatment. Journal of Chemical Technology and Biotechnology, 2006, 81, 1239-1245.	1.6	37

Judy Ann Libra

#	Article	IF	CITATIONS
19	Leachate water quality of soils amended with different swine manure-based amendments. Chemosphere, 2016, 142, 92-99.	4.2	37
20	Intelligent modeling and experimental study on methylene blue adsorption by sodium alginate-kaolin beads. International Journal of Biological Macromolecules, 2021, 186, 79-91.	3.6	35
21	Membrane properties change in fine-pore aeration diffusers: Full-scale variations of transfer efficiency and headloss. Water Research, 2008, 42, 2640-2648.	5.3	31
22	Irrigation water demand of selected agricultural crops in Germany between 1902 and 2010. Science of the Total Environment, 2016, 569-570, 1299-1314.	3.9	28
23	Greenhouse gas emissions from broiler manure treatment options are lowest in well-managed biogas production. Journal of Cleaner Production, 2021, 280, 124969.	4.6	28
24	Properties of Animal-Manure-Based Hydrochars and Predictions Using Published Models. ACS Sustainable Chemistry and Engineering, 2017, 5, 7317-7324.	3.2	27
25	Treatment of hazardous substances in wastewater treatment plants. Environmental Progress, 1989, 8, 107-112.	0.8	19
26	Monitoring off-gas O2/CO2 to predict nitrification performance in activated sludge processes. Water Research, 2010, 44, 3434-3444.	5.3	18
27	Limiting and timing water supply for agricultural production – The case of the Zayandeh-Rud River Basin, Iran. Agricultural Water Management, 2019, 222, 322-335.	2.4	16
28	Benefits and Limitations of Using Hydrochars from Organic Residues as Replacement for Peat on Growing Media. Horticulturae, 2022, 8, 325.	1.2	16
29	Comparative Studies on Water- and Vapor-Based Hydrothermal Carbonization: Process Analysis. Energies, 2020, 13, 5733.	1.6	13
30	Environmental Process Engineering: Building Capacity for Sustainability. Journal of Professional Issues in Engineering Education and Practice, 2007, 133, 308-319.	0.9	10
31	Evaluation of Oxygen Transfer Efficiency under Process Conditions using the Dynamic off-Gas Method. Environmental Technology (United Kingdom), 2007, 28, 479-489.	1.2	10
32	Evaluation of Ceramic and Membrane Diffusers under Operating Conditions with the Dynamic Offgas Method. Water Environment Research, 2005, 77, 447-454.	1.3	8
33	Theoretical framework for estimating design reactor pressure for water-based hydrothermal carbonization (HTC) systems. Thermal Science and Engineering Progress, 2022, 30, 101241.	1.3	5
34	Relationship between irrigation water demand and yield of selected crops in Germany between 1902 and 2010: a modeling study. Environmental Earth Sciences, 2016, 75, 1.	1.3	4
35	Production of Ethanol from Livestock, Agricultural, and Forest Residuals: An Economic Feasibility Study. Environments - MDPI, 2019, 6, 97.	1.5	4
36	Pesticides and herbicides. Water Environment Research, 1996, 68, 564-568.	1.3	3

Judy Ann Libra

#	Article	IF	CITATIONS
37	Hydrothermal carbonization as an alternative sanitation technology: process optimization and development of low-cost reactor. Open Research Europe, 0, 1, 139.	2.0	3
38	Pesticides and herbicides. Water Environment Research, 1995, 67, 548-552.	1.3	2
39	Time-Variations of Transfer Efficiency and Headloss for Fine-Pore Membrane Diffusers in Aeration Systems. Proceedings of the Water Environment Federation, 2007, 2007, 7944-7958.	0.0	1
40	Water use indicators at farm scale – An agro-hydrological software solution. Science of the Total Environment, 2019, 678, 133-145.	3.9	1
41	Hydrothermal carbonization as an alternative sanitation technology: process optimization and development of low-cost reactor. Open Research Europe, 0, 1, 139.	2.0	1
42	Wassernutzung und Wassereffizienz in Landschaften. Acatech-Studie, 2012, , 91-157.	0.3	0