Abderrahim Benslimane

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2063451/publications.pdf

Version: 2024-02-01

236925 233421 2,559 125 25 45 citations g-index h-index papers 136 136 136 2363 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Multi-UAV-Enabled Load-Balance Mobile-Edge Computing for IoT Networks. IEEE Internet of Things Journal, 2020, 7, 6898-6908.	8.7	206
2	Dynamic Clustering-Based Adaptive Mobile Gateway Management in Integrated VANET — 3G Heterogeneous Wireless Networks. IEEE Journal on Selected Areas in Communications, 2011, 29, 559-570.	14.0	186
3	Toward an Effective Risk-Conscious and Collaborative Vehicular Collision Avoidance System. IEEE Transactions on Vehicular Technology, 2010, 59, 1474-1486.	6.3	131
4	A Survey of Localization Systems in Internet of Things. Mobile Networks and Applications, 2019, 24, 761-785.	3.3	122
5	Learning in the Air: Secure Federated Learning for UAV-Assisted Crowdsensing. IEEE Transactions on Network Science and Engineering, 2021, 8, 1055-1069.	6.4	119
6	An efficient routing protocol for connecting vehicular networks to the Internet. Pervasive and Mobile Computing, 2011, 7, 98-113.	3.3	75
7	Optimized Dissemination of Alarm Messages in Vehicular Ad-Hoc Networks (VANET). Lecture Notes in Computer Science, 2004, , 655-666.	1.3	69
8	5G Virtualized Multi-access Edge Computing Platform for IoT Applications. Journal of Network and Computer Applications, 2018, 115, 94-102.	9.1	60
9	TACASHI: Trust-Aware Communication Architecture for Social Internet of Vehicles. IEEE Internet of Things Journal, 2019, 6, 5870-5877.	8.7	59
10	A distributed advanced analytical trust model for VANETs. , 2012, , .		56
11	Machine-Learning-Assisted Security and Privacy Provisioning for Edge Computing: A Survey. IEEE Internet of Things Journal, 2022, 9, 236-260.	8.7	51
12	Security-Aware Virtual Network Embedding Algorithm Based on Reinforcement Learning. IEEE Transactions on Network Science and Engineering, 2021, 8, 1095-1105.	6.4	49
13	High accuracy localization method using AoA in sensor networks. Computer Networks, 2009, 53, 3076-3088.	5.1	47
14	Secure and Privacy-Aware Incentives-Based Witness Service in Social Internet of Vehicles Clouds. IEEE Internet of Things Journal, 2018, 5, 2441-2448.	8.7	44
15	A Deep Learning Model for Earthquake Parameters Observation in IoT System-Based Earthquake Early Warning. IEEE Internet of Things Journal, 2022, 9, 8412-8424.	8.7	43
16	Enhancing IEEE 802.11 Random Backoff in Selfish Environments. IEEE Transactions on Vehicular Technology, 2008, 57, 1806-1822.	6.3	41
17	Trust Management in Industrial Internet of Things. IEEE Transactions on Information Forensics and Security, 2020, 15, 3667-3682.	6.9	41
18	Performance of beacon safety message dissemination in Vehicular Ad hoc NETworks (VANETs). Journal of Zhejiang University: Science A, 2007, 8, 1990-2004.	2.4	37

#	Article	IF	Citations
19	An enhanced energy proficient clustering (EEPC) algorithm for relay selection in heterogeneous WSNs. Ad Hoc Networks, 2021, 116, 102473.	5.5	37
20	Challenges and Solutions in Autonomous Driving: A Blockchain Approach. IEEE Network, 2020, 34, 218-226.	6.9	36
21	Design Guidelines for a Network Architecture Integrating VANET with 3G & Design Guidelines for a Network Architecture Integrating VANET with 3G & Design Guidelines for a Network Architecture Integrating VANET with 3G & Design Guidelines for a Network Architecture Integrating VANET with 3G & Design Guidelines for a Network Architecture Integrating VANET with 3G & Design Guidelines for a Network Architecture Integrating VANET with 3G & Design Guidelines for a Network Architecture Integrating VANET with 3G & Design Guidelines for a Network Architecture Integrating VANET with 3G & Design Guidelines for a Network Architecture Integrating VANET with 3G & Design Guidelines for a Network Architecture Integrating VANET with 3G & Design Guidelines for a Network Architecture Integrating VANET with 3G & Design Guidelines for a Network Architecture Integrating VANET with 3G & Design Guidelines for a Network Architecture Integrating VANET with 3G & Design Guidelines for a Network Architecture Integrating VANET with 3G & Design Guidelines for a Network Architecture for a Network Architecture Integrating VANET with 3G & Design Guidelines for a Network Architecture for a Network A		35
22	Dynamic anchor points selection for mobility management in Software Defined Networks. Journal of Network and Computer Applications, 2015, 57, 1-11.	9.1	34
23	On location-privacy in opportunistic mobile networks, a survey. Journal of Network and Computer Applications, 2018, 103, 157-170.	9.1	33
24	An Energy-Efficient Routing Scheduling Based on Fuzzy Ranking Scheme for Internet of Things. IEEE Internet of Things Journal, 2022, 9, 7251-7260.	8.7	32
25	SDN-Based Resource Allocation in Edge and Cloud Computing Systems: An Evolutionary Stackelberg Differential Game Approach. IEEE/ACM Transactions on Networking, 2022, 30, 1613-1628.	3.8	32
26	Latency-Optimal mmWave Radio Access for V2X Supporting Next Generation Driving Use Cases. IEEE Access, 2019, 7, 6782-6795.	4.2	28
27	Survey on spectrum sharing/allocation for cognitive radio networks Internet of Things. Egyptian Informatics Journal, 2020, 21, 231-239.	6.8	28
28	Energy Power-Aware Routing in OLSR Protocol. , 2006, , .		25
29	A lifetime-based routing protocol for connecting VANETs to the Internet. , 2009, , .		25
30	NovelADS: A Novel Anomaly Detection System for Intra-Vehicular Networks. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 22596-22606.	8.0	25
31	Analytical study of security aspects in 6LoWPAN networks. , 2013, , .		24
32	An Energy-Efficient Multiobjective Scheduling Model for Monitoring in Internet of Things. IEEE Internet of Things Journal, 2018, 5, 1727-1738.	8.7	24
33	Efficient Location Privacy-Aware Forwarding in Opportunistic Mobile Networks. IEEE Transactions on Vehicular Technology, 2014, 63, 893-906.	6.3	22
34	ViCoV: Efficient video streaming for cognitive radio VANET. Vehicular Communications, 2014, 1, 105-122.	4.0	22
35	A New Block-Based Reinforcement Learning Approach for Distributed Resource Allocation in Clustered IoT Networks. IEEE Transactions on Vehicular Technology, 2020, 69, 2891-2904.	6.3	21
36	A Secure and Efficient Wireless Charging Scheme for Electric Vehicles in Vehicular Energy Networks. IEEE Transactions on Vehicular Technology, 2022, 71, 1491-1508.	6.3	21

#	Article	IF	Citations
37	Modeling and analysis of predictable random backoff in selfish environments., 2006,,.		20
38	Secure Clustering Scheme Based Keys Management in VANETs., 2011,,.		20
39	Defending Malicious Check-In Using Big Data Analysis of Indoor Positioning System: An Access Point Selection Approach. IEEE Transactions on Network Science and Engineering, 2020, 7, 2642-2655.	6.4	20
40	DiLSe: Lattice-Based Secure and Dependable Data Dissemination Scheme for Social Internet of Vehicles. IEEE Transactions on Dependable and Secure Computing, 2021, 18, 2520-2534.	5.4	20
41	Noncooperative Gaming for Energy-Efficient Congestion Control in 6LoWPAN. IEEE Internet of Things Journal, 2020, 7, 4777-4788.	8.7	19
42	Reliable broadcasting using polling scheme based receiver for safety applications in vehicular networks. Vehicular Communications, 2016, 4, 1-14.	4.0	18
43	Toward a cross-layer monitoring process for mobile ad hoc networks. Security and Communication Networks, 2009, 2, 351-368.	1.5	17
44	A software-defined caching scheme for the Internet of Things. Computer Communications, 2020, 158, 178-188.	5.1	17
45	UAV-Assisted Multi-Access Edge Computing: Technologies and Challenges. IEEE Internet of Things Magazine, 2021, 4, 12-17.	2.6	17
46	Comparative analysis of RSSI-based indoor localization when using multiple antennas in Wireless Sensor Networks. , 2013, , .		16
47	Robust Enhancement of Intrusion Detection Systems Using Deep Reinforcement Learning and Stochastic Game. IEEE Transactions on Vehicular Technology, 2022, 71, 11089-11102.	6.3	16
48	Analysis of Jamming Effects on IEEE 802.11 Wireless Networks., 2011,,.		15
49	Rate adaptation scheme for IEEE 802.11-based MANETs. Journal of Network and Computer Applications, 2014, 39, 126-139.	9.1	15
50	RSSI-based localisation algorithms using spatial diversity in wireless sensor networks. International Journal of Ad Hoc and Ubiquitous Computing, 2015, 19, 157.	0.5	15
51	Multi-objective optimization for security and QoS adaptation in Wireless Sensor Networks. , 2016, , .		15
52	A secure and resistant architecture against attacks for mobile ad hoc networks. Security and Communication Networks, 2010, 3, 150-166.	1.5	13
53	A secure clusterâ€based architecture for certificates management in vehicular networks. Security and Communication Networks, 2014, 7, 665-683.	1.5	13
54	Trust and Mobility-based Clustering Algorithm for Secure Mobile Ad Hoc Networks. , 2006, , .		12

#	Article	lF	Citations
55	A new opportunistic MAC layer protocol for cognitive IEEE 802.11-based wireless networks., 2009,,.		12
56	Reputation Aware Obfuscation for Mobile Opportunistic Networks. IEEE Transactions on Parallel and Distributed Systems, 2015, 26, 230-240.	5.6	12
57	Metalnjury: Meta-learning framework for reusing the risk knowledge of different construction accidents. Safety Science, 2021, 140, 105315.	4.9	12
58	Security and Pseudo-Anonymity with a Cluster-Based Approach for MANET., 2008,,.		11
59	A Secure Mechanism Design-Based and Game Theoretical Model for MANETs. Mobile Networks and Applications, 2010, 15, 191-204.	3.3	11
60	Stackelberg Differential Game Based Resource Sharing in Hierarchical Fog-Cloud Computing. , 2019, , .		11
61	A new strategy for packets scheduling in cognitive radio internet of things. Computer Networks, 2020, 178, 107292.	5.1	11
62	Ellipse Routing: A Geographic Routing Protocol for Mobile Sensor Networks with Uncertain Positions., 2008,,.		10
63	A trust-based architecture for managing certificates in vehicular ad hoc networks. , 2012, , .		10
64	The quest for location-privacy in opportunistic mobile social networks., 2013,,.		10
65	Truck Platooning Aided Secure Publish/Subscribe System Based on Smart Contract in Autonomous Vehicular Networks. IEEE Transactions on Vehicular Technology, 2021, 70, 782-794.	6.3	10
66	On semantic clustering and adaptive robust regression based energy-aware communication with true outliers detection in WSN. Ad Hoc Networks, 2019, 94, 101934.	5.5	9
67	Dynamical grouping model for distributed real time causal ordering. Computer Communications, 2002, 25, 288-302.	5.1	8
68	Smart Attacks Based on Control Packets Vulnerabilities with IEEE 802.11 MAC., 2008,,.		8
69	RIALS: RSU/INSâ€aided localization system for GPSâ€challenged road segments. Wireless Communications and Mobile Computing, 2016, 16, 1290-1305.	1.2	8
70	AT-Angle: A distributed method for localization using angles in sensor networks. , 2008, , .		7
71	Impacts and solutions of control packets vulnerabilities with IEEE 802.11 MAC. Wireless Communications and Mobile Computing, 2009, 9, 469-488.	1.2	7
72	Cooperative localization techniques for wireless sensor networks: free, signal and angle based techniques. Wireless Communications and Mobile Computing, 2014, 14, 1627-1646.	1.2	7

#	Article	IF	CITATIONS
73	Jamming detection on 802.11p under multi-channel operation in vehicular networks., 2015,,.		7
74	Efficient architecture for direct $8\hat{a} \in \tilde{A} - \hat{a} \in \tilde{A} = 0$ DCT computations with earlier zigzag ordering. Multimedia Tools and Applications, 2016, 75, 6121-6141.	3.9	7
75	Cross-Layer Approach to Improve the Monitoring Process for Mobile Ad Hoc Networks Based on IEEE 802.11., 2007,,.		6
76	Integrating Security with QoS in Next Generation Networks. , 2010, , .		6
77	A cluster based secure architecture for vehicular ad hoc networks. , 2010, , .		6
78	Time-bounded localization algorithm based on distributed Multidimensional Scaling for Wireless Sensor Networks. , 2014, , .		6
79	Sweet: Secure Wireless Energy Transfer with Electric Vehicles in Vehicular Energy Networks. , 2020, , .		6
80	Toward Safer Vehicular Transit: Implementing Deep Learning on Single Channel EEG Systems for Microsleep Detection. IEEE Transactions on Intelligent Transportation Systems, 2023, 24, 1052-1061.	8.0	6
81	A Distributed Method to Localization for Mobile Sensor Networks. , 2007, , .		5
82	EM2NET: An Energy-Saving Explicit Multicast Protocol for MANETs. , 2007, , .		4
83	How MIMO cross-layer design enables QoS while detecting non-cooperative nodes in wireless multi-hop networks. Journal of Network and Computer Applications, 2014, 46, 395-406.	9.1	4
84	Relocating Redundant Sensors in Randomly Deployed Wireless Sensor Networks. , 2018, , .		4
85	Security-Aware Resource Sharing in Software Defined Air-Ground Integrated Networks: A Game Approach., 2020,,.		4
86	AdaptAnon: Adaptive anonymity for service queries in mobile opportunistic networks., 2013,,.		3
87	A Pragmatic VBR Stream Scheduling Policy for IEEE 802.11e HCCA Access Method. IEEE Transactions on Emerging Topics in Computing, 2015, 3, 514-523.	4.6	3
88	Recharging of Wireless Sensor Network using KMEC with dynamic active zone strategy. , 2016, , .		3
89	Neuro-Dominating set scheme for a fast and efficient robot deployment in internet of robotic things. Ad Hoc Networks, 2019, 86, 36-45.	5.5	3
90	A Multi-Domain VNE Algorithm Based on Load Balancing in the IoT Networks. Mobile Networks and Applications, 0 , 1 .	3.3	3

#	Article	IF	CITATIONS
91	Automatic Detection for Privacy Violations in Android Applications. IEEE Internet of Things Journal, 2022, 9, 6159-6172.	8.7	3
92	SecAT-Dist: A Novel Secure AT-Dist Localization Scheme for Wireless Sensor Networks. , 2012, , .		2
93	Social delay tolerant approach for safety services in vehicular networks. , 2015, , .		2
94	Reducing transmission interferences for safety message dissemination in VANETs., 2015, , .		2
95	A Game Theory Based Scheme for Secure and Cooperative UAV Communication. , 2021, , .		2
96	Guest Editorial Computational Social Systems for COVID-19 Emergency Management and Beyond. IEEE Transactions on Computational Social Systems, 2021, 8, 928-929.	4.4	2
97	A Framework to Secure Cluster-Header Decision in Wireless Sensor Network Using Blockchain. Communications in Computer and Information Science, 2020, , 205-218.	0.5	2
98	Optimal proactive monitor placement & Scheduling for IoT networks. Journal of the Operational Research Society, 2022, 73, 2431-2450.	3.4	2
99	Joint Provisioning of QoS and Security in IoD Networks: Classical Optimization Meets Al. IEEE Internet of Things Magazine, 2021, 4, 40-46.	2.6	2
100	HA-A2L., 2007,,.		1
101	A Hybrid Mesh-Explicit Multicast Protocol for MANETs. , 2007, , .		1
102	Security and privacy in ubiquitous computing. Security and Communication Networks, 2013, 6, 1417-1419.	1.5	1
103	Reliable safety message dissemination with minimum energy in VANETs. , 2013, , .		1
104	Polling scheme for reliable broadcasting in vehicular networks. , 2014, , .		1
105	LocRec: Rule-Based Successive Location Recommendation in LBSN. , 2018, , .		1
106	Coordinating Three-Branch Diversity Switching Using a Hidden Markov Model. IEEE Internet of Things Journal, 2020, 7, 258-268.	8.7	1
107	Connectivity Management in an Integrated Heterogeneous Social Networks Framework in Vehicular Environments. , 2021, , .		1
108	A Scalable Multicast Protocol with QoS Guaranties. IFIP Advances in Information and Communication Technology, 2003, , 1-13.	0.7	1

#	Article	IF	CITATIONS
109	Deciding boundedness for systems of two linear communicating finite state machines. Lecture Notes in Computer Science, 1996, , 108-122.	1.3	1
110	A Comparative Analysis of Multicast Protocols for Small MANET Groups. , 2007, , 213-225.		1
111	Guest Editorial: Introduction to the Special Section on Heterogeneous Communications Networks. IEEE Transactions on Network Science and Engineering, 2020, 7, 2361-2362.	6.4	1
112	Multimedia Multicast in Mobile Computing: Handoff Management. Annals of Software Engineering, 2001, 12, 77-93.	0.5	0
113	A Hierarchical Architecture for a Scalable Multicast. Lecture Notes in Computer Science, 2003, , 643-650.	1.3	О
114	Call for Papers: â€~ <i>Security in Mobile Wireless Networks</i> '. International Journal of Communication Systems, 2008, 21, 567-568.	2.5	0
115	Welcome message from the general chairs. , 2010, , .		O
116	Guest Editorial: Special Issue "SM 85-Wireless and Mobile Computing, Networking and Communications― Mobile Networks and Applications, 2010, 15, 187-190.	3.3	0
117	Special issue on security in mobile wireless networks. Security and Communication Networks, 2010, 3, 99-101.	1.5	O
118	A mobility-adaptive information reduction scheme for vehicle safety communications on highways. , 2012, , .		0
119	Guest Editorial: IoT: Protocol Stack, Cross-Layer, and Power Consumption Issues. IEEE Wireless Communications, 2017, 24, 8-9.	9.0	0
120	Guest Editorial Special Issue on Recent Advances on Social Internet of Vehicles. IEEE Internet of Things Journal, 2018, 5, 2420-2422.	8.7	0
121	Defending Malicious Check-in Based on Access Point Selection for Indoor Positioning System. , 2020, , .		О
122	A Distributed Secure Architecture for Vehicular Ad Hoc Networks. International Journal of Business Data Communications and Networking, 2010, 6, 38-63.	0.7	0
123	A Distributed Secure Architecture for Vehicular Ad Hoc Networks. , 2012, , 161-186.		0
124	Optimal mobile beacon trajectories for nodes localisation in wireless sensor networks. International Journal of Ad Hoc and Ubiquitous Computing, 2018, 29, 64.	0.5	0
125	Distributed Packets Scheduling Technique for Cognitive Radio Internet of Things Based on Discrete Permutation Particle Swarm Optimization. , 2020, , .		0