
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2063317/publications.pdf Version: 2024-02-01

YVONNE DÃORINO

#	Article	IF	CITATIONS
1	COVID-19 and the Vasculature: Current Aspects and Long-Term Consequences. Frontiers in Cell and Developmental Biology, 2022, 10, 824851.	3.7	51
2	Targeting platelet-derived CXCL12 impedes arterial thrombosis. Blood, 2022, 139, 2691-2705.	1.4	13
3	Inflammatory Mediators in Atherosclerotic Vascular Remodeling. Frontiers in Cardiovascular Medicine, 2022, 9, .	2.4	16
4	Endothelial ACKR3 drives atherosclerosis by promoting immune cell adhesion to vascular endothelium. Basic Research in Cardiology, 2022, 117, .	5.9	10
5	Endotoxinemia Accelerates Atherosclerosis Through Electrostatic Charge–Mediated Monocyte Adhesion. Circulation, 2021, 143, 254-266.	1.6	266
6	Inflammatory Chemokines in Atherosclerosis. Cells, 2021, 10, 226.	4.1	92
7	Tracing Endothelial CXCR4 May Pave the Way for Localized Lesional Treatment Approaches. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 837-838.	2.4	1
8	Curcumin Reduces Cognitive Deficits by Inhibiting Neuroinflammation through the Endoplasmic Reticulum Stress Pathway in Apolipoprotein E4 Transgenic Mice. ACS Omega, 2021, 6, 6654-6662.	3.5	25
9	Adipocyte-Specific ACKR3 Regulates Lipid Levels in Adipose Tissue. Biomedicines, 2021, 9, 394.	3.2	4
10	Adipocyte calcium sensing receptor is not involved in visceral adipose tissue inflammation or atherosclerosis development in hyperlipidemic Apoeâ^'/â^' mice. Scientific Reports, 2021, 11, 10409.	3.3	4
11	Neutrophil Extracellular Traps Affecting Cardiovascular Health in Infectious and Inflammatory Diseases. Cells, 2021, 10, 1689.	4.1	6
12	PCSK9: A Multi-Faceted Protein That Is Involved in Cardiovascular Biology. Biomedicines, 2021, 9, 793.	3.2	27
13	Targeting the chemokine network in atherosclerosis. Atherosclerosis, 2021, 330, 95-106.	0.8	25
14	A systematic review of the safety and efficacy of currently used treatment modalities in the treatment of patients with PIK3CA-related overgrowth spectrum. Journal of Vascular Surgery: Venous and Lymphatic Disorders, 2021, , .	1.6	4
15	Identification of Hypoxia Induced Metabolism Associated Genes in Pulmonary Hypertension. Frontiers in Pharmacology, 2021, 12, 753727.	3.5	12
16	PCSK9 Imperceptibly Affects Chemokine Receptor Expression In Vitro and In Vivo. International Journal of Molecular Sciences, 2021, 22, 13026.	4.1	4
17	Non-activatable mutant of inhibitor of kappa B kinase α (IKKα) exerts vascular site-specific effects on atherosclerosis in Apoe-deficient mice. Atherosclerosis, 2020, 292, 23-30.	0.8	3
18	Native, Intact Glucagon-Like Peptide 1 Is a Natural Suppressor of Thrombus Growth Under Physiological Flow Conditions. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, e65-e77.	2.4	14

#	Article	IF	CITATIONS
19	Interruption of the CXCL13/CXCR5 Chemokine Axis Enhances Plasma IgM Levels and Attenuates Atherosclerosis Development. Thrombosis and Haemostasis, 2020, 120, 344-347.	3.4	10
20	Immunoinflammatory, Thrombohaemostatic, and Cardiovascular Mechanisms in COVID-19. Thrombosis and Haemostasis, 2020, 120, 1629-1641.	3.4	44
21	Seeing is repairing: how imaging-based timely interference with CXCR4 could improve repair after myocardial infarction. European Heart Journal, 2020, 41, 3576-3578.	2.2	1
22	Germ-free housing conditions do not affect aortic root and aortic arch lesion size of late atherosclerotic low-density lipoprotein receptor-deficient mice. Gut Microbes, 2020, 11, 1809-1823.	9.8	16
23	Chemokines and galectins form heterodimers to modulate inflammation. EMBO Reports, 2020, 21, e47852.	4.5	63
24	Neutrophil Extracellular Traps Participate in Cardiovascular Diseases. Circulation Research, 2020, 126, 1228-1241.	4.5	198
25	B-Cell–Specific CXCR4 Protects Against Atherosclerosis Development and Increases Plasma IgM Levels. Circulation Research, 2020, 126, 787-788.	4.5	19
26	Atypical Chemokine Receptors in Cardiovascular Disease. Thrombosis and Haemostasis, 2019, 119, 534-541.	3.4	21
27	G-Protein Coupled Receptor Targeting on Myeloid Cells in Atherosclerosis. Frontiers in Pharmacology, 2019, 10, 531.	3.5	15
28	Pro-Angiogenic Macrophage Phenotype to Promote Myocardial Repair. Journal of the American College of Cardiology, 2019, 73, 2990-3002.	2.8	117
29	Immunotherapy for cardiovascular disease. European Heart Journal, 2019, 40, 3937-3946.	2.2	127
30	CXCL12 Derived From Endothelial Cells Promotes Atherosclerosis to Drive Coronary Artery Disease. Circulation, 2019, 139, 1338-1340.	1.6	62
31	Hematopoietic ChemR23 (Chemerin Receptor 23) Fuels Atherosclerosis by Sustaining an M1 Macrophage-Phenotype and Guidance of Plasmacytoid Dendritic Cells to Murine Lesions—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 685-693.	2.4	31
32	Hematopoietic Chemr23 Fuels Atherosclerosis By Sustaining A M1 Macrophage-Phenotype And Guidance Of Plasmacytoid Dendritic Cells To Murine Lesions. Atherosclerosis, 2019, 287, e45.	0.8	0
33	The Microbiota Promotes Arterial Thrombosis in Low-Density Lipoprotein Receptor-Deficient Mice. MBio, 2019, 10, .	4.1	50
34	Neonatal obstructive nephropathy induces necroptosis and necroinflammation. Scientific Reports, 2019, 9, 18600.	3.3	24
35	The Ins and Outs of Myeloid Cells in Atherosclerosis. Journal of Innate Immunity, 2018, 10, 479-486.	3.8	15
36	Expression and Cellular Localization of CXCR4 and CXCL12 in Human Carotid Atherosclerotic Plaques. Thrombosis and Haemostasis, 2018, 118, 195-206.	3.4	43

#	Article	IF	CITATIONS
37	Chronic Intake of the Selective Serotonin Reuptake Inhibitor Fluoxetine Enhances Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 1007-1019.	2.4	22
38	Gouty Offense in Patients With Obstructive Coronary Artery Disease Despite Stateâ€ofâ€theâ€Art Therapy. Journal of the American Heart Association, 2018, 7, e010322.	3.7	0
39	Resistin keeps its Janus face. International Journal of Cardiology, 2018, 272, 47-48.	1.7	1
40	Double-Strand DNA Sensing Aim2 Inflammasome Regulates Atherosclerotic Plaque Vulnerability. Circulation, 2018, 138, 321-323.	1.6	69
41	Abstract 185: G-protein Coupled Receptor 55 Deficiency Promotes Atherosclerosis and Inflammation in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, .	2.4	0
42	Human Neutrophil Peptide 1 Limits Hypercholesterolemia-induced Atherosclerosis by Increasing Hepatic LDL Clearance. EBioMedicine, 2017, 16, 204-211.	6.1	10
43	Neutrophil Extracellular Traps in Atherosclerosis and Atherothrombosis. Circulation Research, 2017, 120, 736-743.	4.5	348
44	Targeting mannose receptor expression on macrophages in atherosclerotic plaques of apolipoprotein E-knockout mice using 111In-tilmanocept. EJNMMI Research, 2017, 7, 40.	2.5	32
45	Vascular CXCR4 Limits Atherosclerosis by Maintaining Arterial Integrity. Circulation, 2017, 136, 388-403.	1.6	128
46	Chemokine interactome mapping enables tailored intervention in acute and chronic inflammation. Science Translational Medicine, 2017, 9, .	12.4	121
47	Imaging the Cytokine Receptor CXCR4 in Atherosclerotic Plaques with the Radiotracer ⁶⁸ Ga-Pentixafor for PET. Journal of Nuclear Medicine, 2017, 58, 499-506.	5.0	94
48	Commentary: Indoleamine 2,3-Dioxygenase-Expressing Aortic Plasmacytoid Dendritic Cells Protect against Atherosclerosis by Induction of Regulatory T Cells. Frontiers in Immunology, 2017, 8, 140.	4.8	1
49	Functional ex-vivo Imaging of Arterial Cellular Recruitment and Lipid Extravasation. Bio-protocol, 2017, 7, .	0.4	6
50	Potential cell-specific functions of CXCR4 in atherosclerosis. Hamostaseologie, 2016, 36, 97-102.	1.9	7
51	Cathepsin G Controls Arterial But Not Venular Myeloid Cell Recruitment. Circulation, 2016, 134, 1176-1188.	1.6	54
52	Chemical Hybridization of Glucagon and Thyroid Hormone Optimizes Therapeutic Impact for Metabolic Disease. Cell, 2016, 167, 843-857.e14.	28.9	153
53	Resolving Lipid Mediators Maresin 1 and Resolvin D2 Prevent Atheroprogression in Mice. Circulation Research, 2016, 119, 1030-1038.	4.5	180
54	Aspirin, but Not Tirofiban Displays Protective Effects in Endotoxin Induced Lung Injury. PLoS ONE, 2016, 11. e0161218.	2.5	22

#	Article	IF	CITATIONS
55	Inhibition of NET Release Fails to Reduce Adipose Tissue Inflammation in Mice. PLoS ONE, 2016, 11, e0163922.	2.5	18
56	Neutrophil-macrophage interplay in atherosclerosis: protease-mediated cytokine processing versus NET release. Thrombosis and Haemostasis, 2015, 114, 866-867.	3.4	25
57	MIF and CXCL12 in Cardiovascular Diseases: Functional Differences and Similarities. Frontiers in Immunology, 2015, 6, 373.	4.8	42
58	Evaluation of the BDCA2-DTR Transgenic Mouse Model in Chronic and Acute Inflammation. PLoS ONE, 2015, 10, e0134176.	2.5	8
59	Annexin A1 Counteracts Chemokine-Induced Arterial Myeloid Cell Recruitment. Circulation Research, 2015, 116, 827-835.	4.5	124
60	Hck/Fgr Kinase Deficiency Reduces Plaque Growth and Stability by Blunting Monocyte Recruitment and Intraplaque Motility. Circulation, 2015, 132, 490-501.	1.6	27
61	Not Growth but Death. Circulation Research, 2015, 116, 222-224.	4.5	9
62	Chemokines and their receptors in Atherosclerosis. Journal of Molecular Medicine, 2015, 93, 963-971.	3.9	71
63	Chemokines. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, e52-6.	2.4	36
64	Neutrophils in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 288-295.	2.4	166
65	The CXCL12/CXCR4 chemokine ligand/receptor axis in cardiovascular disease. Frontiers in Physiology, 2014, 5, 212.	2.8	208
66	Deficiency of Endothelial <i>Cxcr4</i> Reduces Reendothelialization and Enhances Neointimal Hyperplasia After Vascular Injury in Atherosclerosis-Prone Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 1209-1220.	2.4	57
67	Deficiency of the Sialyltransferase <i>St3Gal4</i> Reduces Ccl5-Mediated Myeloid Cell Recruitment and Arrest. Circulation Research, 2014, 114, 976-981.	4.5	43
68	Synchronized integrin engagement and chemokine activation is crucial in neutrophil extracellular trap–mediated sterile inflammation. Blood, 2014, 123, 2573-2584.	1.4	234
69	Neutrophils Cast NETs in Atherosclerosis. Circulation Research, 2014, 114, 931-934.	4.5	25
70	Platelet-derived PF4 reduces neutrophil apoptosis following arterial occlusion. Thrombosis and Haemostasis, 2014, 112, 562-564.	3.4	27
71	Bone Marrow-Specific Knock-In of a Non-Activatable Ikkα Kinase Mutant Influences Haematopoiesis but Not Atherosclerosis in Apoe-Deficient Mice. PLoS ONE, 2014, 9, e87452.	2.5	14
72	Neutrophil-Derived Cathelicidin Promotes Adhesion of Classical Monocytes. Circulation Research, 2013, 112, 792-801.	4.5	132

#	Article	IF	CITATIONS
73	Distinct functions of chemokine receptor axes in the atherogenic mobilization and recruitment of classical monocytes. EMBO Molecular Medicine, 2013, 5, 471-481.	6.9	169
74	Footprints of Neutrophil Extracellular Traps as Predictors of Cardiovascular Risk. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 1735-1736.	2.4	35
75	Hematopoietic Interferon Regulatory Factor 8-Deficiency Accelerates Atherosclerosis in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 1613-1623.	2.4	42
76	Plasmacytoid Dendritic Cells in Atherosclerosis. Frontiers in Physiology, 2012, 3, 230.	2.8	38
77	Auto-Antigenic Protein-DNA Complexes Stimulate Plasmacytoid Dendritic Cells to Promote Atherosclerosis. Circulation, 2012, 125, 1673-1683.	1.6	347
78	Lack of Neutrophil-Derived CRAMP Reduces Atherosclerosis in Mice. Circulation Research, 2012, 110, 1052-1056.	4.5	203
79	Presence of luminal neutrophil extracellular traps in atherosclerosis. Thrombosis and Haemostasis, 2012, 107, 597-598.	3.4	212
80	The Use of High-Throughput Technologies to Investigate Vascular Inflammation and Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 182-195.	2.4	31
81	Neutrophilic granulocytes – promiscuous accelerators of atherosclerosis. Thrombosis and Haemostasis, 2011, 106, 839-848.	3.4	55
82	Neutrophil-Derived Cathelicidin Protects from Neointimal Hyperplasia. Science Translational Medicine, 2011, 3, 103ra98.	12.4	100
83	CCL17-expressing dendritic cells drive atherosclerosis by restraining regulatory T cell homeostasis in mice. Journal of Clinical Investigation, 2011, 121, 2898-2910.	8.2	223
84	Human antiphospholipid antibodies induce TNFα in monocytes via Toll-like receptor 8. Immunobiology, 2010, 215, 230-241.	1.9	65
85	Accelerated Evolution of Fetuin-A (FETUA, also AHSC) is Driven by Positive Darwinian Selection, not GC-Biased Gene Conversion. Gene, 2010, 463, 49-55.	2.2	4
86	Generation of multifunctional murine monoclonal antibodies specifically directed to the VP1unique region protein of human parvovirus B19. Immunobiology, 2008, 213, 511-517.	1.9	3
87	Are Antiphospholipid Antibodies an Essential Requirement for an Effective Immune Response to Infections?. Annals of the New York Academy of Sciences, 2007, 1108, 578-583.	3.8	13