
Juan Frausto-Solis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2063203/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Predictive ability of machine learning methods for massive crop yield prediction. Spanish Journal of Agricultural Research, 2014, 12, 313.	0.3	141
2	Attribute Selection Impact on Linear and Nonlinear Regression Models for Crop Yield Prediction. Scientific World Journal, The, 2014, 2014, 1-10.	0.8	36
3	Volatility Forecasting Using Support Vector Regression and a Hybrid Genetic Algorithm. Computational Economics, 2015, 45, 111-133.	1.5	20
4	A Method to Establish the Cooling Scheme in Simulated Annealing Like Algorithms. Lecture Notes in Computer Science, 2004, , 755-763.	1.0	19
5	A Statistical Approach for Algorithm Selection. Lecture Notes in Computer Science, 2004, , 417-431.	1.0	17
6	Forecasting Oil Production Time Series with a Population-Based Simulated Annealing Method. Arabian Journal for Science and Engineering, 2015, 40, 1081-1096.	1.1	16
7	CHT: A Digital Computer Package for Solving Short Term Hydro-Thermal Coordination and Unit Commitment Problems. IEEE Transactions on Power Systems, 1986, 1, 168-174.	4.6	15
8	Time Series Complexities and Their Relationship to Forecasting Performance. Entropy, 2020, 22, 89.	1.1	14
9	Melting Temperature Estimation of Imidazole Ionic Liquids with Clustering Methods. Journal of Chemical Information and Modeling, 2019, 59, 3144-3153.	2.5	12
10	An Efficient Simulated Annealing Algorithm for Feasible Solutions of Course Timetabling. Lecture Notes in Computer Science, 2008, , 675-685.	1.0	10
11	Feature Selection for Better Identification of Subtypes of Guillain-Barré Syndrome. Computational and Mathematical Methods in Medicine, 2014, 2014, 1-9.	0.7	10
12	Chaotic Multi-Objective Simulated Annealing and Threshold Accepting for Job Shop Scheduling Problem. Mathematical and Computational Applications, 2021, 26, 8.	0.7	10
13	Cooperative Simulated Annealing for Path Planning in Multi-robot Systems. Lecture Notes in Computer Science, 2000, , 148-157.	1.0	9
14	MPSA: A Methodology to Parallelize Simulated Annealing and Its Application to the Traveling Salesman Problem. Lecture Notes in Computer Science, 2002, , 89-97.	1.0	9
15	Vertical Fragmentation and Allocation in Distributed Databases with Site Capacity Restrictions Using the Threshold Accepting Algorithm. Lecture Notes in Computer Science, 2000, , 75-81.	1.0	8
16	Survey of polynomial transformations between NP-complete problems. Journal of Computational and Applied Mathematics, 2011, 235, 4851-4865.	1.1	7
17	Golden Ratio Simulated Annealing for Protein Folding Problem. International Journal of Computational Methods, 2015, 12, 1550037.	0.8	7
18	Analytically Tuned Simulated Annealing Applied to the Protein Folding Problem. Lecture Notes in Computer Science, 2007, , 370-377.	1.0	7

JUAN FRAUSTO-SOLIS

#	Article	IF	CITATIONS
19	Comparison and Selection of Exact and Heuristic Algorithms. Lecture Notes in Computer Science, 2004, , 415-424.	1.0	6
20	Towards a predictive model for Guillain-Barré syndrome. , 2015, 2015, 7234-7.		6
21	A Predictive Model for Guillain-Barré Syndrome Based on Single Learning Algorithms. Computational and Mathematical Methods in Medicine, 2017, 2017, 1-9.	0.7	6
22	NeuroFramework: A package based on neuroevolutionary algorithms to estimate the melting temperature of ionic liquids. SoftwareX, 2020, 11, 100448.	1.2	6
23	Convolutional Neural Network–Component Transformation (CNN–CT) for Confirmed COVID-19 Cases. Mathematical and Computational Applications, 2021, 26, 29.	0.7	6
24	A Machine Learning Approach for Modeling Algorithm Performance Predictors. Lecture Notes in Computer Science, 2004, , 70-80.	1.0	5
25	Self-Tuning Mechanism for Genetic Algorithms Parameters, an Application to Data-Object Allocation in the Web. Lecture Notes in Computer Science, 2004, , 77-86.	1.0	5
26	A New Method for Optimal Cropping Pattern. Lecture Notes in Computer Science, 2009, , 566-577.	1.0	5
27	Chaotic Multiquenching Annealing Applied to the Protein Folding Problem. Scientific World Journal, The, 2014, 2014, 1-11.	0.8	5
28	Comparative Study of ARIMA Methods for Forecasting Time Series of the Mexican Stock Exchange. Studies in Computational Intelligence, 2018, , 475-485.	0.7	5
29	Golden Ratio Annealing for Satisfiability Problems Using Dynamically Cooling Schemes. , 2008, , 215-224.		4
30	Three Hybrid Scatter Search Algorithms for Multi-Objective Job Shop Scheduling Problem. Axioms, 2022, 11, 61.	0.9	4
31	Threshold temperature tuning Simulated Annealing for Protein Folding Problem in small peptides. Computational and Applied Mathematics, 2013, 32, 471-482.	1.3	3
32	Multiphase Simulated Annealing Based on Boltzmann and Bose-Einstein Distribution Applied to Protein Folding Problem. Advances in Bioinformatics, 2016, 2016, 1-16.	5.7	3
33	A Peptides Prediction Methodology for Tertiary Structure Based on Simulated Annealing. Mathematical and Computational Applications, 2021, 26, 39.	0.7	3
34	Increasing the Training Speed of SVM, the Zoutendijk Algorithm Case. Lecture Notes in Computer Science, 2005, , 312-320.	1.0	3
35	Data-Object Replication, Distribution, and Mobility in Network Environments. Lecture Notes in Computer Science, 2004, , 539-545.	1.0	3
36	An Application of Causality for Representing and Providing Formal Explanations about the Behavior of the Threshold Accepting Algorithm. Lecture Notes in Computer Science, 2008, , 1087-1098.	1.0	3

JUAN FRAUSTO-SOLIS

#	Article	IF	CITATIONS
37	MultiQuenching Annealing Algorithm for Protein Folding Problem. Lecture Notes in Computer Science, 2009, , 578-589.	1.0	3
38	A Methodology to Parallel the Temperature Cycle in Simulated Annealing. Lecture Notes in Computer Science, 2000, , 63-74.	1.0	3
39	A METHODOLOGY FOR MODELING INTERACTIONS IN COOPERATIVE INFORMATION SYSTEMS USING COLOURED PETRI NETS. International Journal of Software Engineering and Knowledge Engineering, 2002, 12, 619-635.	0.6	2
40	A Reduced Codification for the Logical Representation of Job Shop Scheduling Problems. Lecture Notes in Computer Science, 2004, , 553-562.	1.0	2
41	A Logic Formal Validation Model for the Explanations Generation in an Intelligent Assistant. , 2008, , .		2
42	GRSA Enhanced for Protein Folding Problem in the Case of Peptides. Axioms, 2019, 8, 136.	0.9	2
43	Implementation of an Information Retrieval System Using the Soft Cosine Measure. Studies in Computational Intelligence, 2017, , 757-766.	0.7	2
44	Solving SAT Problems with TA Algorithms Using Constant and Dynamic Markov Chains Length. Lecture Notes in Computer Science, 2005, , 281-290.	1.0	2
45	SAIPO-TAIPO and Genetic Algorithms for Investment Portfolios. Axioms, 2022, 11, 42.	0.9	2
46	A New Algorithm That Obtains an Approximation of the Critical Path in the Job Shop Scheduling Problem. Lecture Notes in Computer Science, 2006, , 450-460.	1.0	1
47	An Improved Simplex-Genetic Method to Solve Hard Linear Programming Problems. Lecture Notes in Computer Science, 2007, , 981-988.	1.0	1
48	Simulated Annealing for SAT Problems Using Dynamic Markov Chains with Linear Regression Equilibrium. , 2008, , .		1
49	Branch and Bound Hybrid Algorithm to Determine the Exact or Approximate Solution of the 0/1 Knapsack Problem with One Parameter. , 2008, , .		1
50	EMRlog Method for Computer Security for Electronic Medical Records with Logic and Data Mining. BioMed Research International, 2015, 2015, 1-12.	0.9	1
51	Comparative Study of Computational Strategies for Protein Structure Prediction. Studies in Computational Intelligence, 2018, , 449-459.	0.7	1
52	Hurst Exponent with ARIMA and Simple Exponential Smoothing for Measuring Persistency of M3- Competition Series. IEEE Latin America Transactions, 2019, 17, 815-822.	1.2	1
53	Modeling Multiple Interactions Using Coloured Petri Nets: A Case Study. Lecture Notes in Computer Science, 2005, , 182-193.	1.0	1
54	AMOSA with Analytical Tuning Parameters for Heterogeneous Computing Scheduling Problem. Studies in Computational Intelligence, 2017, , 701-711.	0.7	1

JUAN FRAUSTO-SOLIS

#	Article	IF	CITATIONS
55	An Approach for Solving Very Large Scale Instances of the Design Distribution Problem for Distributed Database Systems. Lecture Notes in Computer Science, 2005, , 33-42.	1.0	1
56	Design of a Shared Ontology Used for Translating Negotiation Primitives. Lecture Notes in Computer Science, 2006, , 169-178.	1.0	1
57	Cosine Policy Iteration for Solving Infinite-Horizon Markov Decision Processes. Lecture Notes in Computer Science, 2009, , 75-86.	1.0	1
58	Protein Folding Problem in the Case of Peptides Solved by Hybrid Simulated Annealing Algorithms. Studies in Computational Intelligence, 2018, , 141-152.	0.7	1
59	Experimental Analysis of a Neighborhood Generation Mechanism Applied to Scheduling Problem. , 2006, , .		Ο
60	Using Wolfe's Method in Support Vector Machines Learning Stage. Lecture Notes in Computer Science, 2009, , 488-499.	1.0	0
61	A genetic distance metric to discriminate the selection of algorithms for the general ATSP problem. Journal of Intelligent and Fuzzy Systems, 2010, 21, 57-64.	0.8	0
62	Markov decision processes for infinite horizon problems solved with the cosine simplex method. Optimization, 2012, 61, 1133-1150.	1.0	0
63	Application of formal languages in polynomial transformations of instances between NP-complete problems. Journal of Zhejiang University: Science C, 2013, 14, 623-633.	0.7	0
64	A Kernel-Based Predictive Model for Guillain-Barré Syndrome. Lecture Notes in Computer Science, 2015, , 270-281.	1.0	0
65	A Partition Rule for SAT Solvers: The Multiple Partition Rule (MPR). , 2007, , .		Ο
66	TwoPILP: An Integer Programming Method for HCSP in Parallel Computing Centers. Lecture Notes in Computer Science, 2015, , 463-474.	1.0	0
67	Combination of Trees for Guillain-Barré Subtype Classification. Advances in Intelligent Systems and Computing, 2016, , 71-78.	0.5	Ο
68	FCTA: A Forecasting Combined Methodology with a Threshold Accepting Approach. Mathematical Problems in Engineering, 2022, 2022, 1-19.	0.6	0