Cintia Bernardo Gonçalves

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2063161/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Group Contribution Model for Predicting Viscosity of Fatty Compounds. Journal of Chemical & Engineering Data, 2007, 52, 965-972.	1.9	81
2	Liquid–liquid equilibrium data for the system palm oil + fatty acids + ethanol + water at 318.2 K. Fluid Phase Equilibria, 2004, 221, 139-150.	2.5	69
3	Liquidâ^'Liquid Equilibrium Data for the System Corn Oil + Oleic Acid + Ethanol + Water at 298.15 K. Journal of Chemical & Engineering Data, 2002, 47, 416-420.	1.9	65
4	Densities and Viscosities of Vegetable Oils of Nutritional Value. Journal of Chemical & Engineering Data, 2008, 53, 1846-1853.	1.9	52
5	Prediction of Viscosities of Fatty Compounds and Biodiesel by Group Contribution. Energy & Fuels, 2011, 25, 3712-3717.	5.1	51
6	Supercritical CO 2 extraction of oil from green coffee beans: Solubility, triacylglycerol composition, thermophysical properties and thermodynamic modelling. Journal of Supercritical Fluids, 2017, 128, 386-394.	3.2	50
7	Enrichment of diterpenes in green coffee oil using supercritical fluid extraction – Characterization and comparison with green coffee oil from pressing. Journal of Supercritical Fluids, 2014, 95, 137-145.	3.2	48
8	Prediction of Liquidâ^'Liquid Equilibrium for Systems of Vegetable Oils, Fatty Acids, and Ethanol. Journal of Chemical & Engineering Data, 1999, 44, 1365-1369.	1.9	44
9	Deacidification of rice bran oil by liquid–liquid extraction using a renewable solvent. Separation and Purification Technology, 2014, 132, 84-92.	7.9	43
10	Deacidification of Vegetable Oils by Solvent Extraction. Recent Patents on Engineering, 2007, 1, 95-102.	0.4	42
11	Deacidification of palm oil by solvent extraction. Separation and Purification Technology, 2016, 160, 106-111.	7.9	40
12	Fractionation of orange essential oil using liquid–liquid extraction: Equilibrium data for model and real systems at 298.2K Fluid Phase Equilibria, 2015, 399, 87-97.	2.5	37
13	Fractionation of lemon essential oil by solvent extraction: Phase equilibrium for model systems at T=298.2K. Journal of Chemical Thermodynamics, 2012, 54, 316-321.	2.0	34
14	Partition of nutraceutical compounds in deacidification of palm oil by solvent extraction. Journal of Food Engineering, 2007, 81, 21-26.	5.2	33
15	Viscosities of Fatty Mixtures:  Experimental Data and Prediction. Journal of Chemical & Engineering Data, 2007, 52, 2000-2006.	1.9	29
16	Deterpenation of eucalyptus essential oil by liquid+liquid extraction: Phase equilibrium and physical properties for model systems at T=298.2K. Journal of Chemical Thermodynamics, 2014, 69, 66-72.	2.0	29
17	Deterpenation of Bergamot Essential Oil Using Liquidâ diquid Extraction: Equilibrium Data of Model Systems at 298.2 K. Journal of Chemical & Engineering Data, 2011, 56, 2362-2370.	1.9	28
18	Composition, thermal behavior and antioxidant activity of pracaxi (Pentaclethra macroloba) seed oil obtained by supercritical CO2. Biocatalysis and Agricultural Biotechnology, 2020, 24, 101521.	3.1	28

#	Article	IF	CITATIONS
19	Irradiated vacuum-packed lamb meat stored under refrigeration: Microbiology, physicochemical stability and sensory acceptance. Meat Science, 2014, 97, 151-155.	5.5	27
20	Viscosities and densities of systems involved in the deterpenation of essential oils by liquid-liquid extraction: New UNIFAC-VISCO parameters. Journal of Chemical Thermodynamics, 2014, 72, 152-160.	2.0	25
21	Composition and physical properties of babassu seed (Orbignya phalerata) oil obtained by supercritical CO2 extraction. Journal of Supercritical Fluids, 2019, 150, 21-29.	3.2	23
22	Liquid–liquid equilibrium data for the system limonene+carvone+ethanol+water at 298.2K. Fluid Phase Equilibria, 2013, 360, 233-238.	2.5	21
23	Determination of free fatty acids in crude vegetable oil samples obtained by high-pressure processes. Food Chemistry: X, 2021, 12, 100166.	4.3	19
24	Phase equilibrium data for systems composed of oregano essential oil compounds and hydroalcoholic solvents at T=298.2K. Journal of Chemical Thermodynamics, 2015, 88, 61-71.	2.0	16
25	Extraction of oxygenated compounds from crude citrus latifolia peel oil using ethanol/water mixtures as solvents: Phase equilibrium and continuous equipment operation. Separation and Purification Technology, 2018, 199, 271-281.	7.9	16
26	Kinematic Viscosity of Systems Containing Polyethylene Glycol + Salt + Water at 298.2 K. Journal of Chemical & Engineering Data, 2005, 50, 177-181.	1.9	15
27	Extraction of oleuropein from olive leaves and applicability in foods. Quality Assurance and Safety of Crops and Foods, 2020, 12, 50-62.	3.4	11
28	Physical Behavior of the Phases from the Liquid–Liquid Equilibrium of Citrus Essential Oils Systems at 298.2 K. Journal of Chemical & Engineering Data, 2018, 63, 2718-2737.	1.9	10
29	Oil extraction from pequi (Caryocar brasiliensis Camb.) and sacha inchi (Plukenetia huayllabambana sp.) Tj ETQq1 composition. Journal of Supercritical Fluids, 2022, 182, 105527.	1 0.78431 3.2	14 rgBT /Ove 10
30	Viscosities and densities of systems containing fatty compounds and alcoholic solvents. Canadian Journal of Chemical Engineering, 2014, 92, 1939-1950.	1.7	7
31	Liquid-liquid equilibrium of rosemary model essential oil (α-pineneÂ+ eucalyptolÂ+ camphor) and solvent (ethanolÂ+ water) at room conditions. Fluid Phase Equilibria, 2020, 521, 112730.	2.5	7
32	Extração de oleuropeÃna a partir de folhas de oliveira utilizando solvente hidroalcoólico. Brazilian Journal of Food Technology, 2017, 20, .	0.8	5
33	Study of FAME model systems: Database and evaluation of predicting models for biodiesel physical properties. Renewable Energy, 2020, 151, 837-845.	8.9	5
34	Physical properties of systems of interest to the edible oil industry: Viscosities and densities of model systems formed by (triacylglycerol + fatty acid + solvent). Journal of Chemical Thermodynamics, 2017, 113, 198-212.	2.0	4
35	Viscosities and Densities of Fatty Alcohol Mixtures from 298.15 to 338.15 K: Estimation by Kay's Rule and Prediction by the UNIFAC-VISCO and GC-UNIMOD Group Contribution Methods. Journal of Chemical & Engineering Data, 2019, 64, 1937-1947.	1.9	4
36	Physical Properties of Model and Real Systems Composed of Essential Oils and Hydroalcoholic Solvents at 298.2 K and Atmospheric Pressure. Journal of Chemical & Engineering Data, 2019, 64, 1873-1884.	1.9	4

#	Article	IF	CITATIONS
37	Liquid–Liquid Equilibrium Data for the System Lard + Oleic Acid + Ethanol + Water at 318.2 K: Cholesterol Distribution Coefficients. Journal of Chemical & Engineering Data, 2012, 57, 1728-1736.	1.9	1