Yinguo Xiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2063123/publications.pdf

Version: 2024-02-01

331670 434195 1,847 31 21 31 h-index citations g-index papers 31 31 31 1878 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Ni/Li Disordering in Layered Transition Metal Oxide: Electrochemical Impact, Origin, and Control. Accounts of Chemical Research, 2019, 52, 2201-2209.	15.6	315
2	Origin of structural degradation in Li-rich layered oxide cathode. Nature, 2022, 606, 305-312.	27.8	206
3	Highly Dispersed Cobalt Clusters in Nitrogenâ€Doped Porous Carbon Enable Multiple Effects for Highâ€Performance Li–S Battery. Advanced Energy Materials, 2020, 10, 1903550.	19.5	192
4	Correlation between manganese dissolution and dynamic phase stability in spinel-based lithium-ion battery. Nature Communications, 2019, 10, 4721.	12.8	182
5	Tiâ€Gradient Doping to Stabilize Layered Surface Structure for High Performance Highâ€Ni Oxide Cathode of Liâ€Ion Battery. Advanced Energy Materials, 2019, 9, 1901756.	19.5	169
6	Insight into the origin of lithium/nickel ions exchange in layered Li(NixMnyCoz)O2 cathode materials. Nano Energy, 2018, 49, 77-85.	16.0	99
7	Intrinsic Role of Cationic Substitution in Tuning Li/Ni Mixing in High-Ni Layered Oxides. Chemistry of Materials, 2019, 31, 2731-2740.	6.7	85
8	Twin boundary defect engineering improves lithium-ion diffusion for fast-charging spinel cathode materials. Nature Communications, 2021, 12, 3085.	12.8	77
9	Prelithiated Li-Enriched Gradient Interphase toward Practical High-Energy NMC–Silicon Full Cell. ACS Energy Letters, 2021, 6, 320-328.	17.4	50
10	Enhancing the Electrochemical Performance and Structural Stability of Ni-Rich Layered Cathode Materials via Dual-Site Doping. ACS Applied Materials & Enhancing the Electrochemical Performance and Structural Stability of Ni-Rich Layered Cathode Materials via Dual-Site Doping. ACS Applied Materials & Enhancing the Electrochemical Performance and Structural Stability of Ni-Rich Layered Cathode Materials via Dual-Site Doping. ACS Applied Materials & Enhancing the Electrochemical Performance and Structural Stability of Ni-Rich Layered Cathode Materials via Dual-Site Doping. ACS Applied Materials & Enhancing via Dual-Site Doping via Diagnostic via	8.0	49
11	Triggering anionic redox activity in Fe/Mn-based layered oxide for high-performance sodium-ion batteries. Nano Energy, 2022, 94, 106958.	16.0	40
12	Tuning Li-lon Diffusion in α-LiMn _{1–<i>x</i>} Fe _{<i>x</i>} PO ₄ Nanocrystals by Antisite Defects and Embedded β-Phase for Advanced Li-lon Batteries. Nano Letters, 2017, 17, 4934-4940.	9.1	38
13	Surface Engineering Suppresses the Failure of Biphasic Sodium Layered Cathode for High Performance Sodiumâ€lon Batteries. Advanced Functional Materials, 2022, 32, 2109319.	14.9	35
14	Tuning Li-enrichment in high-Ni layered oxide cathodes to optimize electrochemical performance for Li-ion battery. Nano Energy, 2019, 62, 709-717.	16.0	33
15	A highly-stable layered Fe/Mn-based cathode with ultralow strain for advanced sodium-ion batteries. Nano Energy, 2021, 88, 106206.	16.0	32
16	Unveiling the migration behavior of lithium ions in NCM/Graphite full cell via in operando neutron diffraction. Energy Storage Materials, 2022, 44, 1-9.	18.0	27
17	Precision grain boundary engineering in commercial Bi ₂ Te _{2.7} Se _{0.3} thermoelectric materials towards high performance. Journal of Materials Chemistry A, 2021, 9, 11442-11449.	10.3	26
18	Insights into the structural evolution and Li/O loss in high-Ni layered oxide cathodes. Nano Energy, 2019, 59, 327-335.	16.0	25

#	Article	IF	Citations
19	Promoting the performances of P2-type sodium layered cathode by inducing Na site rearrangement. Nano Energy, 2022, 100, 107482.	16.0	25
20	Possible magnetic-polaron-switched positive and negative magnetoresistance in the GdSi single crystals. Scientific Reports, 2012, 2, 750.	3.3	24
21	Atomic-scale tuning of oxygen-doped Bi ₂ Te _{2.7} Se _{0.3} to simultaneously enhance the Seebeck coefficient and electrical conductivity. Nanoscale, 2020, 12, 1580-1588.	5.6	23
22	Optimizing the structure of layered cathode material for higher electrochemical performance by elucidating structural evolution during heat processing. Nano Energy, 2020, 78, 105194.	16.0	19
23	Enhanced thermoelectric performance through optimizing structure of anionic framework in AgCuTe-based materials. Chemical Engineering Journal, 2020, 386, 123917.	12.7	16
24	Enhanced magnetocaloric effect and magnetic phase diagrams of single-crystal <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>GdCrO</mml:mi><mml:mn>3<td>mlജനു> <td>nmılamsub></td></td></mml:mn></mml:msub></mml:math>	ml ജനു > <td>nmılamsub></td>	nm ıla msub>
25	Highly Distorted Grain Boundary with an Enhanced Carrier/Phonon Segregation Effect Facilitates High-Performance Thermoelectric Materials. ACS Applied Materials & Interfaces, 2021, 13, 51018-51027.	8.0	13
26	Super-Necking Crystal Growth and Structural and Magnetic Properties of SrTb _{0₄ Single Crystals. ACS Omega, 2020, 5, 16584-16594.}	3.5	11
27	Achieving High Thermoelectric Performance by Introducing 3D Atomically Thin Conductive Framework in Porous Bi∢sub>2Te∢sub>2.7Se∢sub>0.3 arbon Nanotube Hybrids. Advanced Electronic Materials, 2020, 6, 2000292.	5.1	8
28	Revealing Insights into Li _{<i>x</i>} FePO ₄ Nanocrystals with Magnetic Order at Room Temperature Resulting in Trapping of Li Ions. Journal of Physical Chemistry Letters, 2019, 10, 4794-4799.	4.6	7
29	Evolution from helical to collinear ferromagnetic order of the Eu2+ spins in RbEu(Fe1â^'xNix)4As4. Physical Review Research, 2022, 4, .	3.6	3
30	Bulk domain Meissner state in the ferromagnetic superconductor <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>EuFe</mml:mi><mml:mcow><mml:msub><mml:mi>EuFe</mml:mi><mml:mcow><mml:msub><mml:mi>EuFe</mml:mi><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mm< td=""><td>l:mn>2<td>ıml:mn></td></td></mm<></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:msub></mml:mcow></mml:msub></mml:mcow></mml:msub></mml:mrow></mml:math>	l:mn>2 <td>ıml:mn></td>	ıml:mn>
31	Nanoparticle-induced morphological transformation in block copolymer-based nanocomposites. Nanoscale, 2022, 14, 8766-8775.	5.6	1