
## Sebastian Leuzinger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2062932/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Moving beyond photosynthesis: from carbon source to sinkâ€driven vegetation modeling. New<br>Phytologist, 2014, 201, 1086-1095.                                                                                                    | 7.3  | 421       |
| 2  | Precipitation manipulation experiments – challenges and recommendations for the future. Ecology<br>Letters, 2012, 15, 899-911.                                                                                                     | 6.4  | 411       |
| 3  | A plant's perspective of extremes: terrestrial plant responses to changing climatic variability. Global<br>Change Biology, 2013, 19, 75-89.                                                                                        | 9.5  | 393       |
| 4  | Simple additive effects are rare: a quantitative review of plant biomass and soil process responses to combined manipulations of <scp><scp>CO<sub>2</sub></scp> and temperature. Global Change Biology, 2012, 18, 2681-2693.</scp> | 9.5  | 365       |
| 5  | Drought survival of tropical tree seedlings enhanced by non-structural carbohydrate levels. Nature<br>Climate Change, 2014, 4, 710-714.                                                                                            | 18.8 | 360       |
| 6  | A meta-analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change. Nature Ecology and Evolution, 2019, 3, 1309-1320.                                                                      | 7.8  | 304       |
| 7  | Do global change experiments overestimate impacts on terrestrial ecosystems?. Trends in Ecology and Evolution, 2011, 26, 236-241.                                                                                                  | 8.7  | 300       |
| 8  | Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO <sub>2</sub> . New Phytologist, 2021, 229, 2413-2445.                                                                                   | 7.3  | 286       |
| 9  | Tree surface temperature in an urban environment. Agricultural and Forest Meteorology, 2010, 150, 56-62.                                                                                                                           | 4.8  | 240       |
| 10 | Forest resilience and tipping points at different spatioâ€ŧemporal scales: approaches and challenges.<br>Journal of Ecology, 2015, 103, 5-15.                                                                                      | 4.0  | 224       |
| 11 | Towards a unified study of multiple stressors: divisions and common goals across research disciplines. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20200421.                                               | 2.6  | 191       |
| 12 | Tree species diversity affects canopy leaf temperatures in a mature temperate forest. Agricultural and<br>Forest Meteorology, 2007, 146, 29-37.                                                                                    | 4.8  | 172       |
| 13 | Modelling carbon sources and sinks in terrestrial vegetation. New Phytologist, 2019, 221, 652-668.                                                                                                                                 | 7.3  | 163       |
| 14 | Central <scp>E</scp> uropean hardwood trees in a highâ€ <scp>CO</scp> <sub>2</sub> future: synthesis<br>of an 8â€year forest canopy <scp>CO</scp> <sub>2</sub> enrichment project. Journal of Ecology, 2013,<br>101, 1509-1519.    | 4.0  | 141       |
| 15 | Water savings in mature deciduous forest trees under elevated CO <sub>2</sub> . Global Change<br>Biology, 2007, 13, 2498-2508.                                                                                                     | 9.5  | 135       |
| 16 | A 2°C warmer world is not safe for ecosystem services in the <scp>E</scp> uropean <scp>A</scp> lps.<br>Global Change Biology, 2013, 19, 1827-1840.                                                                                 | 9.5  | 132       |
| 17 | Partitioning direct and indirect effects reveals the response of water-limited ecosystems to elevated CO <sub>2</sub> . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12757-12762.   | 7.1  | 102       |
| 18 | Sensitivity analysis of a processâ€based ecosystem model: Pinpointing parameterization and structural issues. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 505-528.                                               | 3.0  | 101       |

SEBASTIAN LEUZINGER

| #  | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Reproductive energy investment in corals: scaling with module size. Oecologia, 2003, 136, 524-531.                                                                                                                 | 2.0 | 90        |
| 20 | Rainfall distribution is the main driver of runoff under future CO <sub>2</sub> oncentration in a<br>temperate deciduous forest. Global Change Biology, 2010, 16, 246-254.                                         | 9.5 | 68        |
| 21 | Growth and carbon relations of mature <i>Picea abies</i> trees under 5Âyears of freeâ€air<br>CO <sub>2</sub> enrichment. Journal of Ecology, 2016, 104, 1720-1733.                                                 | 4.0 | 68        |
| 22 | Global Diversity of Desert Hypolithic Cyanobacteria. Frontiers in Microbiology, 2017, 8, 867.                                                                                                                      | 3.5 | 61        |
| 23 | Stomatal conductance in mature deciduous forest trees exposed to elevated CO2. Trees - Structure and Function, 2007, 21, 151-159.                                                                                  | 1.9 | 60        |
| 24 | Plant growth: the What, the How, and the Why. New Phytologist, 2021, 232, 25-41.                                                                                                                                   | 7.3 | 58        |
| 25 | Biogeography of photoautotrophs in the high polar biome. Frontiers in Plant Science, 2015, 6, 692.                                                                                                                 | 3.6 | 56        |
| 26 | Beyond global change: lessons from 25Âyears of CO2 research. Oecologia, 2013, 171, 639-651.                                                                                                                        | 2.0 | 55        |
| 27 | Globally consistent influences of seasonal precipitation limit grassland biomass response to elevated CO2. Nature Plants, 2019, 5, 167-173.                                                                        | 9.3 | 51        |
| 28 | A sinkâ€limited growth model improves biomass estimation along boreal and alpine tree lines. Global<br>Ecology and Biogeography, 2013, 22, 924-932.                                                                | 5.8 | 45        |
| 29 | Long-term 13C labeling provides evidence for temporal and spatial carbon allocation patterns in mature Picea abies. Oecologia, 2014, 175, 747-762.                                                                 | 2.0 | 35        |
| 30 | Reconciling observations with modeling: The fate of water and carbon allocation in a mature deciduous forest exposed to elevated CO2. Agricultural and Forest Meteorology, 2013, 174-175, 144-157.                 | 4.8 | 33        |
| 31 | Temperature Effects on Biomass and Regeneration of Vegetation in a Geothermal Area. Frontiers in<br>Plant Science, 2017, 8, 249.                                                                                   | 3.6 | 27        |
| 32 | Carbon and nitrogen stable isotope signals for an entire alpine flora, based on herbarium samples.<br>Alpine Botany, 2016, 126, 153-166.                                                                           | 2.4 | 25        |
| 33 | Leaf Stable Isotope and Nutrient Status of Temperate Mangroves As Ecological Indicators to Assess<br>Anthropogenic Activity and Recovery from Eutrophication. Frontiers in Plant Science, 2016, 7, 1922.           | 3.6 | 22        |
| 34 | Daytime stem swelling and seasonal reversal in the peristaltic depletion of stored water along the stem of Avicennia marina (Forssk.) Vierh. Tree Physiology, 2018, 38, 965-978.                                   | 3.1 | 22        |
| 35 | Untargeted metabolomics in halophytes: The role of different metabolites in New Zealand mangroves<br>under multi-factorial abiotic stress conditions. Environmental and Experimental Botany, 2020, 173,<br>103993. | 4.2 | 20        |
| 36 | Experimental vs. modeled water use in mature Norway spruce (Picea abies) exposed to elevated CO2.<br>Frontiers in Plant Science, 2012, 3, 229.                                                                     | 3.6 | 19        |

SEBASTIAN LEUZINGER

| #  | Article                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | The â€~island effect' in terrestrial global change experiments: a problem with no solution?. AoB PLANTS, 2015, 7, plv092.                                                                                                                     | 2.3 | 17        |
| 38 | Invasive rodents have multiple indirect effects on seabird island invertebrate food web structure.<br>Ecological Applications, 2017, 27, 1190-1198.                                                                                           | 3.8 | 17        |
| 39 | Hydraulic Coupling of a Leafless Kauri Tree Remnant to Conspecific Hosts. IScience, 2019, 19, 1238-1247.                                                                                                                                      | 4.1 | 17        |
| 40 | Ten new insights in climate science 2020 – a horizon scan. Global Sustainability, 2021, 4, .                                                                                                                                                  | 3.3 | 17        |
| 41 | Biomass and nutrient composition of temperate mangroves (Avicennia marina var. australasica) in New<br>Zealand. New Zealand Journal of Marine and Freshwater Research, 2017, 51, 427-442.                                                     | 2.0 | 13        |
| 42 | Photosynthetic enhancement and diurnal stem and soil carbon fluxes in a mature Norway spruce stand under elevated CO2. Environmental and Experimental Botany, 2016, 124, 110-119.                                                             | 4.2 | 10        |
| 43 | Disentangling the net: concomitant xylem and over-bark size measurements reveal the<br>phloem-generated turgor signal behind daytime stem swelling in the mangrove Avicennia marina.<br>Functional Plant Biology, 2019, 46, 393.              | 2.1 | 9         |
| 44 | Towards a better understanding of carbon flux. Journal of Biological Education, 2010, 44, 175-179.                                                                                                                                            | 1.5 | 7         |
| 45 | Water relations determine short time leaf growth patterns in the mangrove <scp><i>Avicennia<br/>marina</i></scp> ( <scp>Forssk</scp> .) <scp>Vierh</scp> Plant, Cell and Environment, 2019, 42, 527-535.                                      | 5.7 | 7         |
| 46 | Phytophthora pluvialis Studies on Douglas-fir Require Swiss Needle Cast Suppression. Plant Disease,<br>2017, 101, 1259-1262.                                                                                                                  | 1.4 | 6         |
| 47 | Environmental drivers of stem radius change and heterogeneity of stem radial water storage in the<br>mangrove Avicennia marina (Forssk.) Vierh Agricultural and Forest Meteorology, 2020, 280, 107764.                                        | 4.8 | 6         |
| 48 | No carbon limitation after lower crown loss in Pinus radiata. Annals of Botany, 2020, 125, 955-967.                                                                                                                                           | 2.9 | 6         |
| 49 | Are the well-fed less thirsty? Effects of drought and salinity on New Zealand mangroves. Journal of<br>Plant Ecology, 2022, 15, 85-99.                                                                                                        | 2.3 | 2         |
| 50 | Die Auswirkungen des globalen Wandels auf Schweizer WĀkder aus ¶kophysiologischer Sicht  <br>Effects of global change on Swiss forests from an ecophysiological point of view. Schweizerische<br>Zeitschrift Fur Forstwesen, 2010, 161, 2-11. | 0.1 | 0         |