Carlos Vila

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2062733/publications.pdf

Version: 2024-02-01

109264 123376 4,054 97 35 61 citations h-index g-index papers 148 148 148 3650 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Dual catalysis: combining photoredox and Lewis base catalysis for direct Mannich reactions. Chemical Communications, 2011, 47, 2360-2362.	2.2	367
2	Dual Catalysis: Combination of Photocatalytic Aerobic Oxidation and Metal Catalyzed Alkynylation Reactionsâ€"CC Bond Formation Using Visible Light. Chemistry - A European Journal, 2012, 18, 5170-5174.	1.7	217
3	Asymmetric Organocatalysis in Continuous Flow: Opportunities for Impacting Industrial Catalysis. ACS Catalysis, 2015, 5, 1972-1985.	5.5	177
4	Continuous Flow Organocatalytic C–H Functionalization and Cross-Dehydrogenative Coupling Reactions: Visible Light Organophotocatalysis for Multicomponent Reactions and C–C, C–P Bond Formations. ACS Catalysis, 2013, 3, 1676-1680.	5.5	176
5	Photoredox Catalysis as an Efficient Tool for the Aerobic Oxidation of Amines and Alcohols: Bioinspired Demethylations and Condensations. ACS Catalysis, 2012, 2, 2810-2815.	5.5	137
6	Visible Light Photoredox-Catalyzed Multicomponent Reactions. Organic Letters, 2013, 15, 2092-2095.	2.4	135
7	Organocatalytic Asymmetric Addition of Naphthols and Electronâ€Rich Phenols to Isatinâ€Derived Ketimines: Highly Enantioselective Construction of Tetrasubstituted Stereocenters. Angewandte Chemie - International Edition, 2015, 54, 6320-6324.	7.2	127
8	Highly Enantioselective Friedelâ^'Crafts Alkylations of Indoles with Simple Enones Catalyzed by Zirconium(IV)â^'BINOL Complexesâ€. Organic Letters, 2007, 9, 2601-2604.	2.4	123
9	Visible-light mediated heterogeneous C–H functionalization: oxidative multi-component reactions using a recyclable titanium dioxide (TiO2) catalyst. Green Chemistry, 2013, 15, 2056.	4.6	121
10	Trends in Organocatalytic Conjugate Addition to Enones: An Efficient Approach to Optically Active Alkynyl, Alkenyl, and Ketone Products. Angewandte Chemie - International Edition, 2009, 48, 7338-7342.	7.2	80
11	Visible-light photoredox catalyzed synthesis of pyrroloisoquinolines via organocatalytic oxidation/[3 + 2] cycloaddition/oxidative aromatization reaction cascade with Rose Bengal. Beilstein Journal of Organic Chemistry, 2014, 10, 1233-1238.	1.3	76
12	Organocatalytic Domino Michael–Knoevenagel Condensation Reaction for the Synthesis of Optically Active 3â€Diethoxyphosphorylâ€2â€oxocyclohexâ€3â€enecarboxylates. Chemistry - A European Journal, 2009, 1 3093-3102.	5,1.7	74
13	Enantioselective Zirconium-Catalyzed Friedelâ^'Crafts Alkylation of Pyrrole with Trifluoromethyl Ketones. Organic Letters, 2009, 11, 441-444.	2.4	73
14	Palladium-catalysed direct cross-coupling of secondary alkyllithium reagents. Chemical Science, 2014, 5, 1361.	3.7	73
15	Organocatalytic Enantioselective Friedel–Crafts Aminoalkylation of Indoles in the Carbocyclic Ring. ACS Catalysis, 2016, 6, 2689-2693.	5.5	70
16	Recent Advances in Photocatalytic Functionalization of Quinoxalinâ€2â€ones. European Journal of Organic Chemistry, 2020, 2020, 6148-6172.	1.2	70
17	Synthesis of Functionalized Indoles with a Trifluoromethylâ€Substituted Stereogenic Tertiary Carbon Atom Through an Enantioselective Friedel–Crafts Alkylation with βâ€Trifluoromethylâ€Î±,βâ€enones. Chemist - A European Journal, 2010, 16, 9117-9122.	ry 1.7	68
18	Catalytic Direct Cross-Coupling of Organolithium Compounds with Aryl Chlorides. Organic Letters, 2013, 15, 5114-5117.	2.4	66

#	Article	IF	Citations
19	Direct catalytic cross-coupling of alkenyllithium compounds. Chemical Science, 2015, 6, 1394-1398.	3.7	64
20	Hindered Aryllithium Reagents as Partners in Palladiumâ€Catalyzed Crossâ€Coupling: Synthesis of Tri―and Tetraâ€∢i>ortho∢/i>â€Substituted Biaryls under Ambient Conditions. Angewandte Chemie - International Edition, 2013, 52, 13329-13333.	7.2	63
21	Oxygen Activated, Palladium Nanoparticle Catalyzed, Ultrafast Cross oupling of Organolithium Reagents. Angewandte Chemie - International Edition, 2017, 56, 3354-3359.	7.2	62
22	Catalytic asymmetric conjugate addition of Grignard reagents to chromones. Chemical Communications, 2013, 49, 5933.	2,2	57
23	Palladiumâ€Catalysed Direct Crossâ€Coupling of Organolithium Reagents with Aryl and Vinyl Triflates. Chemistry - A European Journal, 2014, 20, 13078-13083.	1.7	53
24	Organocatalytic Enantioselective Alkylation of Pyrazolâ€3â€ones with Isatinâ€Derived Ketimines: Stereocontrolled Construction of Vicinal Tetrasubstituted Stereocenters. Advanced Synthesis and Catalysis, 2016, 358, 1583-1588.	2.1	52
25	Catalytic enantioselective Friedel–Crafts alkylation at the 2-position of indole with simple enones. Tetrahedron Letters, 2007, 48, 6731-6734.	0.7	51
26	Direct Catalytic Azidation of Allylic Alcohols. Organic Letters, 2012, 14, 768-771.	2.4	51
27	Catalytic Enantioselective Conjugate Alkynylation of β-Aryl-β-trifluoromethyl Enones Constructing Propargylic All-Carbon Quaternary Stereogenic Centers. Organic Letters, 2016, 18, 3538-3541.	2.4	49
28	Palladiumâ€Catalyzed, <i>tertâ€</i> Butyllithiumâ€Mediated Dimerization of Aryl Halides and Its Application in the Atropselective Total Synthesis of Mastigophoreneâ€A. Angewandte Chemie - International Edition, 2016, 55, 3620-3624.	7.2	47
29	Catalytic Enantioselective Friedel–Crafts Reactions of Naphthols and Electron-Rich Phenols. Synthesis, 2016, 48, 2151-2164.	1.2	46
30	Hydroxy-Directed Enantioselective Hydroxyalkylation in the Carbocyclic Ring of Indoles. Organic Letters, 2017, 19, 1546-1549.	2.4	45
31	A Combination of Visible-Light Organophotoredox Catalysis and Asymmetric Organocatalysis for the Enantioselective Mannich Reaction of Dihydroquinoxalinones with Ketones. Organic Letters, 2019, 21, 6011-6015.	2.4	43
32	Catalytic Asymmetric Synthesis of Phosphine Boronates. Angewandte Chemie - International Edition, 2015, 54, 7867-7871.	7.2	41
33	Merging Visible‣ightâ€Photoredox and Nickel Catalysis. ChemCatChem, 2015, 7, 1790-1793.	1.8	40
34	Goldâ€Catalyzed Asymmetric Allylic Substitution of Free Alcohols: An Enantioselective Approach to Chiral Chromans with Quaternary Stereocenters for the Synthesis of Vitaminâ€E and Analogues. Chemistry - A European Journal, 2014, 20, 13913-13917.	1.7	38
35	Organocatalytic enantioselective aza-Friedel–Crafts reaction of 2-naphthols with benzoxathiazine 2,2-dioxides. RSC Advances, 2015, 5, 60101-60105.	1.7	37
36	Pd-Catalyzed Cross-Coupling of Aryllithium Reagents with 2-Alkoxy-Substituted Aryl Chlorides: Mild and Efficient Synthesis of 3,3′-Diaryl BINOLs. Organic Letters, 2015, 17, 62-65.	2.4	35

#	Article	IF	CITATIONS
37	Enantioselective Synthesis of Tertiary Alcohols through a Zirconium-Catalyzed Friedel–Crafts Alkylation of Pyrroles with α-Ketoesters. Journal of Organic Chemistry, 2011, 76, 6286-6294.	1.7	34
38	Organocatalytic Enantioselective Synthesis of Pyrazoles Bearing a Quaternary Stereocenter. Chemistry - an Asian Journal, 2016, 11, 1532-1536.	1.7	33
39	Organocatalytic Enantioselective 1,6â€ <i>aza</i> å€Michael Addition of Isoxazolinâ€5â€ones to <i>p</i> å€Quinone Methides. European Journal of Organic Chemistry, 2020, 2020, 627-630.	1.2	33
40	Synthesis of Functionalized Indoles with an αâ€Stereogenic Ketone Moiety Through an Enantioselective Friedel–Crafts Alkylation with (<i>E</i>)â€1,4â€Diarylâ€2â€buteneâ€1,4â€diones. Advanced Synthesis and Cat 2009, 351, 2433-2440.	caŁy s is,	30
41	Catalytic Enantioselective Azaâ€Reformatsky Reaction with Cyclic Imines. Chemistry - A European Journal, 2016, 22, 17590-17594.	1.7	30
42	Organocatalytic Enantioselective Friedel–Crafts Alkylation of 1â€Naphthol Derivatives and Activated Phenols with Ethyl Trifluoropyruvate. Advanced Synthesis and Catalysis, 2015, 357, 3047-3051.	2.1	29
43	Enantioselective alkynylation of benzo[e][1,2,3]-oxathiazine 2,2-dioxides catalysed by (R)-VAPOL-Zn complexes: synthesis of chiral propargylic cyclic sulfamidates. Organic and Biomolecular Chemistry, 2015, 13, 7393-7396.	1.5	26
44	Enantioselective Synthesis of 5-Trifluoromethyl-2-oxazolines under Dual Silver/Organocatalysis. Journal of Organic Chemistry, 2019, 84, 314-325.	1.7	26
45	Catalytic Asymmetric Reactions Involving the Sevenâ€Membered Cyclic Imine Moieties Present in Dibenzo[<i>b</i> , <i>f</i>][1,4]oxazepines. European Journal of Organic Chemistry, 2018, 2018, 140-146.	1.2	25
46	Diarylprolinol as a Ligand for Enantioselective Alkynylation of Cyclic Imines. Advanced Synthesis and Catalysis, 2017, 359, 1582-1587.	2.1	23
47	Catalytic enantioselective aza-Reformatsky reaction with seven-membered cyclic imines dibenzo[b,f][1,4]oxazepines. Organic Chemistry Frontiers, 2017, 4, 1624-1628.	2.3	23
48	Organocatalytic Enantioselective Synthesis of α-Hydroxyketones through a Friedel–Crafts Reaction of Naphthols and Activated Phenols with Aryl- and Alkylglyoxal Hydrates. Organic Letters, 2016, 18, 5652-5655.	2.4	22
49	Enantioselective Synthesis of Functionalized Diazaspirocycles from 4â€Benzylideneisoxazolâ€5(4 <i>H</i>)â€one Derivatives and Isocyanoacetate Esters. Advanced Synthesis and Catalysis, 2020, 362, 3564-3569.	2.1	22
50	Enantioselective synthesis of 2-substituted-1,4-diketones from (S)-mandelic acid enolate and $\hat{l}_{\pm},\hat{l}^{2}$ -enones. Tetrahedron, 2006, 62, 9174-9182.	1.0	21
51	Enantioselective Synthesis of 2-Amino-1,1-diarylalkanes Bearing a Carbocyclic Ring Substituted Indole through Asymmetric Catalytic Reaction of Hydroxyindoles with Nitroalkenes. Journal of Organic Chemistry, 2018, 83, 6397-6407.	1.7	21
52	Organocatalytic enantioselective functionalization of indoles in the carbocyclic ring with cyclic imines. New Journal of Chemistry, 2019, 43, 130-134.	1.4	21
53	Enantioselective synthesis of chiral oxazolines from unactivated ketones and isocyanoacetate esters by synergistic silver/organocatalysis. Chemical Communications, 2018, 54, 2862-2865.	2.2	20
54	Recent Advances in Catalytic Enantioselective Synthesis of Pyrazolones with a Tetrasubstituted Stereogenic Center at the 4-Position. Synthesis, 2021, 53, 215-237.	1.2	20

#	Article	IF	CITATIONS
55	Asymmetric Oxidative Mannich Reactions. Advanced Synthesis and Catalysis, 2021, 363, 602-628.	2.1	20
56	Oxygen Activated, Palladium Nanoparticle Catalyzed, Ultrafast Crossâ€Coupling of Organolithium Reagents. Angewandte Chemie, 2017, 129, 3402-3407.	1.6	18
57	Bodipy-VAD-Fmk, a useful tool to study yeast peptide N-glycanase activity. Organic and Biomolecular Chemistry, 2007, 5, 3690.	1.5	17
58	Catalytic Diastereo- and Enantioselective Synthesis of 2-Imidazolinones. Organic Letters, 2019, 21, 4063-4066.	2.4	17
59	Diastereoselective Michael addition of (S)-mandelic acid enolate to 2-arylidene-1,3-diketones: enantioselective diversity-oriented synthesis of densely substituted pyrazoles. Tetrahedron, 2006, 62, 8069-8076.	1.0	16
60	Palladiumâ€Catalyzed, <i>tertâ€</i> Butyllithiumâ€Mediated Dimerization of Aryl Halides and Its Application in the Atropselective Total Synthesis of Mastigophoreneâ€A. Angewandte Chemie, 2016, 128, 3684-3688.	1.6	16
61	Organocatalytic Enantioselective Functionalization of Hydroxyquinolines through an Azaâ€Friedelâ€Crafts Alkylation with Isatinâ€derived Ketimines. Advanced Synthesis and Catalysis, 2018, 360, 859-864.	2.1	15
62	9,10-Phenanthrenedione as Visible-Light Photoredox Catalyst: A Green Methodology for the Functionalization of 3,4-Dihydro-1,4-Benzoxazin-2-Ones through a Friedel-Crafts Reaction. Catalysts, 2018, 8, 653.	1.6	15
63	Organocatalytic Enantioselective Strecker Reaction with Sevenâ€Membered Cyclic Imines. Advanced Synthesis and Catalysis, 2018, 360, 3662-3666.	2.1	15
64	Photocatalytic Giese Addition of 1,4-Dihydroquinoxalin-2-ones to Electron-Poor Alkenes Using Visible Light. Organic Letters, 2020, 22, 8012-8017.	2.4	15
65	<i>t</i> BuLiâ€Mediated Oneâ€Pot Direct Highly Selective Crossâ€Coupling of Two Distinct Aryl Bromides. Chemistry - A European Journal, 2015, 21, 15520-15524.	1.7	14
66	One-pot sequential 1,2-addition, Pd-catalysed cross-coupling of organolithium reagents with Weinreb amides. Chemical Communications, 2016, 52, 1206-1209.	2.2	14
67	Indirect regioselective heteroarylation of indoles through a Friedel–Crafts reaction with (E)-1,4-diaryl-2-buten-1,4-diones. Tetrahedron, 2009, 65, 9264-9270.	1.0	13
68	NMR Spectroscopic Characterization and DFT Calculations of Zirconium(IV)-3,3 $\hat{a}\in^2$ -Br _{$\hat{a}\in^\infty$BINOLate and Related Complexes Used in an Enantioselective Friedel$\hat{a}\in^\infty$Crafts Alkylation of Indoles with $\hat{l}\pm,\hat{l}^2$-Unsaturated Ketones. Journal of Organic Chemistry, 2012, 77, 10545-10556.}	1.7	13
69	Asymmetric Organocatalytic Synthesis of <i>aza</i> sâ \in Spirocyclic Compounds from Isothiocyanates and Isocyanides. European Journal of Organic Chemistry, 2021, 2021, 2268-2284.	1.2	13
70	A poly(glycidyl-co-ethylene dimethacrylate) nanohybrid modified with \hat{l}^2 -cyclodextrin as a sorbent for solid-phase extraction of phenolic compounds. Mikrochimica Acta, 2019, 186, 615.	2.5	12
71	Enantioselective addition of Et2Zn to sevenâ€membered cyclic imines catalyzed by a (R)-VAPOL-Zn(II) complex. Tetrahedron Letters, 2017, 58, 3358-3361.	0.7	11
72	Regio―and Stereoselective Synthesis of 3â€Pyrazolylideneâ€2â€oxindole Compounds by Nucleophilic Vinylic Substitution of (<i>E</i>)â€3â€(Nitromethylene)indolinâ€2â€one. Advanced Synthesis and Catalysis, 2019, 361, 1902-1907.	2.1	11

#	Article	IF	CITATIONS
73	Copper-Catalyzed Aerobic Oxidative Alkynylation of 3,4-Dihydroquinoxalin-2-ones. Synthesis, 2020, 52, 544-552.	1.2	11
74	Organocatalytic Enantioselective Aminoalkylation of 5â€Aminopyrazole Derivatives with Cyclic Imines. European Journal of Organic Chemistry, 2020, 2020, 7450-7454.	1.2	11
7 5	Enantioselective Friedel–Crafts Alkylation of Indoles with (<i>E</i>)â€1â€Arylâ€4â€benzyloxybutâ€2â€enâ€1â Catalyzed by an (<i>R</i>)â€3,3′â€Br ₂ BINOLate–Hafnium(IV) Complex. European Journal of Organic Chemistry, 2013, 2013, 1902-1907.	â€ones 1.2	10
76	Catalytic Asymmetric Synthesis of Phosphine Boronates. Angewandte Chemie, 2015, 127, 7978-7982.	1.6	10
77	Organocatalytic enantioselective aminoalkylation of pyrazol-3-ones with aldimines generated <i>ii) situ from \hat{l}_{\pm}-amido sulfones. Organic and Biomolecular Chemistry, 2019, 17, 9859-9863.</i>	1.5	10
78	Copper-catalysed \hat{l}_{\pm} -selective allylic alkylation of heteroaryllithium reagents. Organic and Biomolecular Chemistry, 2014, 12, 9321-9323.	1.5	9
79	Regioâ€, Diastereoâ€, and Enantioselective Organocatalytic Addition of 4â€Substituted Pyrazolones to Isatinâ€Derived Nitroalkenes. European Journal of Organic Chemistry, 2019, 2019, 3040-3044.	1.2	9
80	Asymmetric Addition and Cycloaddition Reactions with Ylideneâ€Fiveâ€Membered Heterocycles. Advanced Synthesis and Catalysis, 2021, 363, 5196-5234.	2.1	9
81	Catalytic Diastereo- and Enantioselective Vinylogous Mannich Reaction of Alkylidenepyrazolones to Isatin-Derived Ketimines. Organic Letters, 2021, 23, 7391-7395.	2.4	8
82	Enantioselective Synthesis of Substituted Indoles Through Zirconium(IV)-Catalyzed Friedel–Crafts Alkylation. Synthesis, 2012, 44, 3590-3594.	1.2	7
83	Metal-Free Diastereo- and Enantioselective Dearomative Formal [3 + 2] Cycloaddition of 2-Nitrobenzofurans and Isocyanoacetate Esters. Organic Letters, 2022, 24, 2149-2154.	2.4	7
84	Radical Addition of Dihydroquinoxalin-2-ones to Trifluoromethyl Ketones under Visible-Light Photoredox Catalysis. Journal of Organic Chemistry, 2022, 87, 9343-9356.	1.7	7
85	Visible-light-accelerated amination of quinoxalin-2-ones and benzo[1,4]oxazin-2-ones with dialkyl azodicarboxylates under metal and photocatalyst-free conditions. Organic and Biomolecular Chemistry, 2021, 19, 6250-6255.	1.5	6
86	Catalytic Asymmetric Friedel–Crafts Alkylations in Total Synthesis. , 0, , 223-270.		4
87	Synthesis of Multisubstituted 1,4-Dihydrobenzoxazin-2-ones through a One-Pot Nucleophilic N-Alkylation/C-Alkylation of Cyclic α-Imino Esters. Synthesis, 2017, 49, 2683-2690.	1.2	4
88	Nitroenynes as Electrophiles in Organocatalysis and their Application in the Synthesis of Chiral Heterocycles. European Journal of Organic Chemistry, 2021, 2021, 2255-2267.	1.2	4
89	Enantioselective Addition of Sodium Bisulfite to Nitroalkenes. A Convenient Approach to Chiral Sulfonic Acids. European Journal of Organic Chemistry, 2021, 2021, 5284-5287.	1.2	4
90	Catalytic Diastereo- and Enantioselective Synthesis of Tertiary Trifluoromethyl Carbinols through a Vinylogous Aldol Reaction of Alkylidenepyrazolones with Trifluoromethyl Ketones. Journal of Organic Chemistry, 2022, 87, 4538-4549.	1.7	4

CARLOS VILA

#	Article	IF	CITATIONS
91	Catalytic Enantioselective Addition of Me2Zn to Isatins. Catalysts, 2017, 7, 387.	1.6	3
92	Squaramide-Catalyzed Enantioselective Michael Addition of Pyrazol-3- ones to ortho-Quinone Methides. Letters in Organic Chemistry, 2020, 17, 837-844.	0.2	2
93	Enantioselective Friedel–Crafts reaction of hydroxyarenes with nitroenynes to access chiral heterocycles <i>via</i> sequential catalysis. Organic and Biomolecular Chemistry, 2021, 19, 6990-6994.	1.5	1
94	Zirconium-Catalyzed Friedel-Crafts Alkylation of Pyrrole. Synfacts, 2009, 2009, 0404-0404.	0.0	0
95	Frontispiece: Palladium-Catalysed Direct Cross-Coupling of Organolithium Reagents with Aryl and Vinyl Triflates. Chemistry - A European Journal, 2014, 20, n/a-n/a.	1.7	0
96	Innentitelbild: Catalytic Asymmetric Synthesis of Phosphine Boronates (Angew. Chem. 27/2015). Angewandte Chemie, 2015, 127, 7832-7832.	1.6	0
97	Enantioselective zinc-mediated conjugate alkynylation of saccharin-derived 1- <i>aza</i> butadienes. Chemical Communications, 2020, 56, 9461-9464.	2.2	0