Yuzhong Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/206215/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fine particulate matter (PM _{2.5}) trends in China, 2013–2018: separating contributions from anthropogenic emissions and meteorology. Atmospheric Chemistry and Physics, 2019, 19, 11031-11041.	1.9	442
2	Rapid Increases in Warm-Season Surface Ozone and Resulting Health Impact in China Since 2013. Environmental Science and Technology Letters, 2020, 7, 240-247.	3.9	255
3	Arctic sea ice, Eurasia snow, and extreme winter haze in China. Science Advances, 2017, 3, e1602751.	4.7	181
4	Top-of-atmosphere radiative forcing affected by brown carbon in the upper troposphere. Nature Geoscience, 2017, 10, 486-489.	5.4	168
5	NOx Emission Reduction and Recovery during COVID-19 in East China. Atmosphere, 2020, 11, 433.	1.0	160
6	Quantifying methane emissions from the largest oil-producing basin in the United States from space. Science Advances, 2020, 6, eaaz5120.	4.7	155
7	Control of particulate nitrate air pollution in China. Nature Geoscience, 2021, 14, 389-395.	5.4	139
8	Global distribution of methane emissions, emission trends, and OH concentrations and trends inferred from an inversion of GOSAT satellite data for 2010–2015. Atmospheric Chemistry and Physics, 2019, 19, 7859-7881.	1.9	111
9	Possible heterogeneous chemistry of hydroxymethanesulfonate (HMS) in northern China winter haze. Atmospheric Chemistry and Physics, 2019, 19, 1357-1371.	1.9	97
10	Climate-driven ground-level ozone extreme in the fall over the Southeast United States. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10025-10030.	3.3	87
11	Ozone pollution over China and India: seasonality and sources. Atmospheric Chemistry and Physics, 2020, 20, 4399-4414.	1.9	79
12	Modeling the global radiative effect of brown carbon: a potentially larger heating source in the tropical free troposphere than black carbon. Atmospheric Chemistry and Physics, 2020, 20, 1901-1920.	1.9	70
13	Attribution of the accelerating increase in atmospheric methane during 2010–2018 by inverse analysis of GOSAT observations. Atmospheric Chemistry and Physics, 2021, 21, 3643-3666.	1.9	68
14	Satellite-based survey of extreme methane emissions in the Permian basin. Science Advances, 2021, 7, .	4.7	66
15	Thermodynamic Modeling Suggests Declines in Water Uptake and Acidity of Inorganic Aerosols in Beijing Winter Haze Events during 2014/2015–2018/2019. Environmental Science and Technology Letters, 2019, 6, 752-760.	3.9	56
16	Global methane budget and trend, 2010–2017: complementarity of inverse analyses using in situ (GLOBALVIEWplus CH ₄ ObsPack) and satellite (GOSAT) observations. Atmospheric Chemistry and Physics, 2021, 21, 4637-4657.	1.9	55
17	Global distribution of methane emissions: a comparative inverse analysis of observations from the TROPOMI and GOSAT satellite instruments. Atmospheric Chemistry and Physics, 2021, 21, 14159-14175.	1.9	54
18	Bottom-Up Estimates of Coal Mine Methane Emissions in China: A Gridded Inventory, Emission Factors, and Trends. Environmental Science and Technology Letters, 2019, 6, 473-478.	3.9	52

YUZHONG ZHANG

#	Article	IF	CITATIONS
19	Unravelling a large methane emission discrepancy in Mexico using satellite observations. Remote Sensing of Environment, 2021, 260, 112461.	4.6	49
20	2010–2015 North American methane emissions, sectoral contributions, and trends: a high-resolution inversion of GOSAT observations of atmospheric methane. Atmospheric Chemistry and Physics, 2021, 21, 4339-4356.	1.9	45
21	Large vertical gradient of reactive nitrogen oxides in the boundary layer: Modeling analysis of DISCOVERâ€AQ 2011 observations. Journal of Geophysical Research D: Atmospheres, 2016, 121, 1922-1934.	1.2	38
22	Enhanced trans-Himalaya pollution transport to the Tibetan Plateau by cut-off low systems. Atmospheric Chemistry and Physics, 2017, 17, 3083-3095.	1.9	38
23	Improving PM2.5 Air Quality Model Forecasts in China Using a Bias-Correction Framework. Atmosphere, 2017, 8, 147.	1.0	37
24	Monitoring global tropospheric OH concentrations using satellite observations of atmospheric methane. Atmospheric Chemistry and Physics, 2018, 18, 15959-15973.	1.9	34
25	COVIDâ€19 Impact on the Concentration and Composition of Submicron Particulate Matter in a Typical City of Northwest China. Geophysical Research Letters, 2020, 47, e2020GL089035.	1.5	33
26	Satelliteâ€Observed Changes in Mexico's Offshore Gas Flaring Activity Linked to Oil/Gas Regulations. Geophysical Research Letters, 2019, 46, 1879-1888.	1.5	32
27	Satellite Constraints on the Latitudinal Distribution and Temperature Sensitivity of Wetland Methane Emissions. AGU Advances, 2021, 2, e2021AV000408.	2.3	31
28	Methane emissions in the United States, Canada, and Mexico: evaluation of national methane emission inventories and 2010–2017 sectoral trends by inverse analysis of in situ (GLOBALVIEWplus) Tj ETQq0 0 0 rgB	T /Qverloc 1.9	ck 10 Tf 50 38
29	Atmospheric Chemistry and Physics, 2022, 22, 395-418. The 2019 methane budget and uncertainties at 1° resolution and each country through Bayesian integration Of GOSAT total column methane data and a priori inventory estimates. Atmospheric Chemistry and Physics, 2022, 22, 6811-6841.	1.9	24
30	Inverse modelling of NO _{<i>x</i>} emissions over eastern China: uncertainties due to chemical non-linearity. Atmospheric Measurement Techniques, 2016, 9, 5193-5201.	1.2	22
31	Updated Global Fuel Exploitation Inventory (GFEI) for methane emissions from the oil, gas, and coal sectors: evaluation with inversions of atmospheric methane observations. Atmospheric Chemistry and Physics, 2022, 22, 3235-3249.	1.9	22
32	Sustained methane emissions from China after 2012 despite declining coal production and rice-cultivated area. Environmental Research Letters, 2021, 16, 104018.	2.2	19
33	Comparative analysis of low-Earth orbit (TROPOMI) and geostationary (GeoCARB, GEO-CAPE) satellite instruments for constraining methane emissions on fine regional scales: application to the Southeast US. Atmospheric Measurement Techniques, 2018, 11, 6379-6388.	1.2	17
34	Global modeling of heterogeneous hydroxymethanesulfonate chemistry. Atmospheric Chemistry and Physics, 2021, 21, 457-481.	1.9	17
35	Large biogenic contribution to boundary layer O ₃ O regression slope in summer. Geophysical Research Letters, 2017, 44, 7061-7068.	1.5	14
36	A Bayesian framework for deriving sector-based methane emissions from top-down fluxes. Communications Earth & Environment, 2021, 2, .	2.6	12

#	Article	IF	CITATIONS
37	Estimator of Surface Ozone Using Formaldehyde and Carbon Monoxide Concentrations Over the Eastern United States in Summer. Journal of Geophysical Research D: Atmospheres, 2018, 123, 7642-7655.	1.2	11
38	Improve observation-based ground-level ozone spatial distribution by compositing satellite and surface observations: A simulation experiment. Atmospheric Environment, 2018, 180, 226-233.	1.9	8
39	Reduced-cost construction of Jacobian matrices for high-resolution inversions of satellite observations of atmospheric composition. Atmospheric Measurement Techniques, 2021, 14, 5521-5534.	1.2	5