Rahmat Wibowo

List of Publications by Citations

Source: https://exaly.com/author-pdf/206193/rahmat-wibowo-publications-by-citations.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

12
papers1,004
citations8
h-index12
g-index12
ext. papers1,047
ext. citations3.6
avg, IF3.3
L-index

#	Paper	IF	Citations
12	Protein electrochemistry using aligned carbon nanotube arrays. <i>Journal of the American Chemical Society</i> , 2003 , 125, 9006-7	16.4	773
11	Kinetic and thermodynamic parameters of the Li/Li+ couple in the room temperature ionic liquid N-butyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl) imide in the temperature range 298-318 K: a theoretical and experimental study using Pt and Ni electrodes. <i>Journal of Physical</i>	3.4	61
10	Chemistry B, 2009, 113, 12293-8 A Study of the Na/Na+ Redox Couple in Some Room Temperature Ionic Liquids. <i>Journal of Physical Chemistry C</i> , 2010, 114, 3618-3626	3.8	38
9	Monitoring potassium metal electrodeposition from an ionic liquid using in situ electrochemical-X-ray photoelectron spectroscopy. <i>Chemical Physics Letters</i> , 2011 , 509, 72-76	2.5	37
8	In situ electrochemical-X-ray Photoelectron Spectroscopy: Rubidium metal deposition from an ionic liquid in competition with solvent breakdown. <i>Chemical Physics Letters</i> , 2011 , 517, 103-107	2.5	27
7	Investigating the Electrode Kinetics of the Li/Li+ Couple in a Wide Range of Room Temperature Ionic Liquids at 298 K. <i>Journal of Chemical & Engineering Data</i> , 2010 , 55, 1374-1376	2.8	25
6	The electrode potentials of the Group I alkali metals in the ionic liquid N-butyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide. <i>Chemical Physics Letters</i> , 2010 , 492, 276-280	2.5	22
5	Electroreduction of CO2 using copper-deposited on boron-doped diamond (BDD) 2016,		11
4	The Group I Alkali Metals in Ionic Liquids: Electrodeposition and Determination of Their Kinetic and Thermodynamic Properties. <i>ECS Transactions</i> , 2010 , 33, 523-535	1	5
3	Recent progress in direct urea fuel cell. <i>Open Chemistry</i> , 2021 , 19, 1116-1133	1.6	2
2	Non-enzymatic glucose sensor based on electrodeposited copper on carbon paste electrode (Cu/CPE) 2016 ,		2
1	Effect of annealing temperature on the characteristic of reduced highly ordered TiO2 nanotube arrays and their CO gas-sensing performance. <i>Processing and Application of Ceramics</i> , 2021 , 15, 417-427	1.4	1