
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2061770/publications.pdf Version: 2024-02-01



ANNA MENINI

| #  | Article                                                                                                                                                                                          | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Comprehensive Chemosensory Psychophysical Evaluation of Self-reported Gustatory Dysfunction in<br>Patients With Long-term COVID-19. JAMA Otolaryngology - Head and Neck Surgery, 2022, 148, 281. | 2.2  | 11        |
| 2  | Slow Inactivation of Sodium Channels Contributes to Short-Term Adaptation in Vomeronasal Sensory Neurons. ENeuro, 2022, 9, ENEURO.0471-21.2022.                                                  | 1.9  | 5         |
| 3  | The cyclic AMP signaling pathway in the rodent main olfactory system. Cell and Tissue Research, 2021, 383, 429-443.                                                                              | 2.9  | 16        |
| 4  | Six-Month Psychophysical Evaluation of Olfactory Dysfunction in Patients with COVID-19. Chemical Senses, 2021, 46, .                                                                             | 2.0  | 100       |
| 5  | A Role for STOML3 in Olfactory Sensory Transduction. ENeuro, 2021, 8, ENEURO.0565-20.2021.                                                                                                       | 1.9  | 8         |
| 6  | Functional expression of TMEM16A in taste bud cells. Journal of Physiology, 2021, 599, 3697-3714.                                                                                                | 2.9  | 8         |
| 7  | TMEM16A and TMEM16B Modulate Pheromone-Evoked Action Potential Firing in Mouse Vomeronasal Sensory Neurons. ENeuro, 2021, 8, ENEURO.0179-21.2021.                                                | 1.9  | 4         |
| 8  | Anion and Cation Permeability of the Mouse TMEM16F Calcium-Activated Channel. International<br>Journal of Molecular Sciences, 2021, 22, 8578.                                                    | 4.1  | 12        |
| 9  | Assessing the extent and timing of chemosensory impairments during COVID-19 pandemic. Scientific Reports, 2021, 11, 17504.                                                                       | 3.3  | 23        |
| 10 | Recent Smell Loss Is the Best Predictor of COVID-19 Among Individuals With Recent Respiratory Symptoms. Chemical Senses, 2021, 46, .                                                             | 2.0  | 119       |
| 11 | Paving the way for designing drugs targeting TMEM16A. Trends in Pharmacological Sciences, 2021, 42, 979-980.                                                                                     | 8.7  | 1         |
| 12 | Alzheimer's Disease: What Can We Learn From the Peripheral Olfactory System?. Frontiers in<br>Neuroscience, 2020, 14, 440.                                                                       | 2.8  | 30        |
| 13 | More Than Smell—COVID-19 Is Associated With Severe Impairment of Smell, Taste, and Chemesthesis.<br>Chemical Senses, 2020, 45, 609-622.                                                          | 2.0  | 375       |
| 14 | Textured nanofibrils drive microglial phenotype. Biomaterials, 2020, 257, 120177.                                                                                                                | 11.4 | 3         |
| 15 | Bitter tastants and artificial sweeteners activate a subset of epithelial cells in acute tissue slices of the rat trachea. Scientific Reports, 2019, 9, 8834.                                    | 3.3  | 8         |
| 16 | TMEM16A calcium-activated chloride currents in supporting cells of the mouse olfactory epithelium.<br>Journal of General Physiology, 2019, 151, 954-966.                                         | 1.9  | 16        |
| 17 | Sensory Adaptation to Chemical Cues by Vomeronasal Sensory Neurons. ENeuro, 2018, 5, ENEURO.0223-18.2018.                                                                                        | 1.9  | 15        |
| 18 | The long tale of the calcium activated Cl <sup>â^²</sup> channels in olfactory transduction. Channels, 2017, 11, 399-414.                                                                        | 2.8  | 44        |

| #  | Article                                                                                                                                                                                                      | lF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | The Ca2+-activated Clâ^' channel TMEM16B regulates action potential firing and axonal targeting in olfactory sensory neurons. Journal of General Physiology, 2016, 148, 293-311.                             | 1.9 | 49        |
| 20 | Development of the Olfactory Epithelium and Nasal Glands in TMEM16A-/- and TMEM16A+/+ Mice. PLoS ONE, 2015, 10, e0129171.                                                                                    | 2.5 | 10        |
| 21 | Multiple effects of anthracene-9-carboxylic acid on the TMEM16B/anoctamin2 calcium-activated chloride channel. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 1005-1013.                          | 2.6 | 19        |
| 22 | Conditional knockout of TMEM16A/anoctamin1 abolishes the calcium-activated chloride current in mouse vomeronasal sensory neurons. Journal of General Physiology, 2015, 145, 285-301.                         | 1.9 | 28        |
| 23 | Circuit Formation and Function in the Olfactory Bulb of Mice with Reduced Spontaneous Afferent Activity. Journal of Neuroscience, 2015, 35, 146-160.                                                         | 3.6 | 36        |
| 24 | Assessment of the Olfactory Function in Italian Patients with Type 3 von Willebrand Disease Caused by a Homozygous 253 Kb Deletion Involving VWF and TMEM16B/ANO2. PLoS ONE, 2015, 10, e0116483.             | 2.5 | 7         |
| 25 | Conditional knockout of TMEM16A/anoctamin1 abolishes the calcium-activated chloride current in mouse vomeronasal sensory neurons. Journal of Experimental Medicine, 2015, 212, 2125OIA23.                    | 8.5 | 0         |
| 26 | Developmental expression of the calciumâ€activated chloride channels TMEM16A and TMEM16B in the<br>mouse olfactory epithelium. Developmental Neurobiology, 2014, 74, 657-675.                                | 3.0 | 19        |
| 27 | Transplanted Human Adipose Tissue-Derived Stem Cells Engraft and Induce Regeneration in Mice<br>Olfactory Neuroepithelium in Response to Dichlobenil Subministration. Chemical Senses, 2014, 39,<br>617-629. | 2.0 | 17        |
| 28 | Interactions between permeation and gating in the TMEM16B/anoctamin2 calcium-activated chloride channel. Journal of General Physiology, 2014, 143, 703-718.                                                  | 1.9 | 31        |
| 29 | TrkB Signaling Directs the Incorporation of Newly Generated Periglomerular Cells in the Adult Olfactory Bulb. Journal of Neuroscience, 2013, 33, 11464-11478.                                                | 3.6 | 32        |
| 30 | Common dynamical features of sensory adaptation in photoreceptors and olfactory sensory neurons.<br>Scientific Reports, 2013, 3, 1251.                                                                       | 3.3 | 32        |
| 31 | Calcium-activated chloride channels in the apical region of mouse vomeronasal sensory neurons.<br>Journal of General Physiology, 2012, 140, 3-15.                                                            | 1.9 | 50        |
| 32 | The voltage dependence of the TMEM16B/anoctamin2 calcium-activated chloride channel is modified by mutations in the first putative intracellular loop. Journal of General Physiology, 2012, 139, 285-294.    | 1.9 | 36        |
| 33 | Responses to Sulfated Steroids of Female Mouse Vomeronasal Sensory Neurons. Chemical Senses, 2012, 37, 849-858.                                                                                              | 2.0 | 18        |
| 34 | Anoctamin 2/TMEM16B: a calciumâ€activated chloride channel in olfactory transduction. Experimental<br>Physiology, 2012, 97, 193-199.                                                                         | 2.0 | 48        |
| 35 | A Dynamical Feedback Model for Adaptation in the Olfactory Transduction Pathway. Biophysical<br>Journal, 2012, 102, 2677-2686.                                                                               | 0.5 | 19        |
| 36 | Flash Photolysis of Caged Compounds in the Cilia of Olfactory Sensory Neurons. Journal of<br>Visualized Experiments, 2011, , e3195.                                                                          | 0.3 | 6         |

| #  | Article                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | The Cellular Prion Protein Is Expressed in Olfactory Sensory Neurons of Adult Mice but Does Not<br>Affect the Early Events of the Olfactory Transduction Pathway. Chemical Senses, 2011, 36, 791-797.                           | 2.0  | 7         |
| 38 | Odorant Detection and Discrimination in the Olfactory System. Lecture Notes in Electrical Engineering, 2011, , 3-18.                                                                                                            | 0.4  | 4         |
| 39 | Calcium concentration jumps reveal dynamic ion selectivity of calcium-activated chloride currents in<br>mouse olfactory sensory neurons and TMEM16b-transfected HEK 293T cells. Journal of Physiology,<br>2010, 588, 4189-4204. | 2.9  | 61        |
| 40 | Short- and long-term adaptation in olfactory transduction as a leaky integral feedback. , 2009, , .                                                                                                                             |      | 0         |
| 41 | From Pheromones to Behavior. Physiological Reviews, 2009, 89, 921-956.                                                                                                                                                          | 28.8 | 291       |
| 42 | TMEM16B induces chloride currents activated by calcium in mammalian cells. Pflugers Archiv<br>European Journal of Physiology, 2009, 458, 1023-1038.                                                                             | 2.8  | 200       |
| 43 | Human Cord Blood CD133+ Stem Cells Transplanted to Nod-Scid Mice Provide Conditions for<br>Regeneration of Olfactory Neuroepithelium After Permanent Damage Induced by Dichlobenil. Stem<br>Cells, 2009, 27, 825-835.           | 3.2  | 13        |
| 44 | Calciumâ€activated chloride currents in olfactory sensory neurons from mice lacking bestrophinâ€2.<br>Journal of Physiology, 2009, 587, 4265-4279.                                                                              | 2.9  | 44        |
| 45 | Signal Transduction in Vertebrate Olfactory Cilia. Frontiers in Neuroscience, 2009, , 203-224.                                                                                                                                  | 0.0  | 20        |
| 46 | Regulation of Bestrophins by Ca2+: A Theoretical and Experimental Study. PLoS ONE, 2009, 4, e4672.                                                                                                                              | 2.5  | 18        |
| 47 | Electroolfactogram Responses from Organotypic Cultures of the Olfactory Epithelium from Postnatal Mice. Chemical Senses, 2008, 33, 397-404.                                                                                     | 2.0  | 12        |
| 48 | New Whiffs About Chemesthesis. Focus on "TRPM5-Expressing Solitary Chemosensory Cells Respond to<br>Odorous Irritants― Journal of Neurophysiology, 2008, 99, 1055-1056.                                                         | 1.8  | 2         |
| 49 | Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels in Mouse Vomeronasal Sensory<br>Neurons. Journal of Neurophysiology, 2008, 100, 576-586.                                                                           | 1.8  | 33        |
| 50 | Temporal Development of Cyclic Nucleotide-Gated and Ca2+-Activated Clâ^' Currents in Isolated Mouse<br>Olfactory Sensory Neurons. Journal of Neurophysiology, 2007, 98, 153-160.                                                | 1.8  | 62        |
| 51 | Ligand specificity of odorant receptors. Journal of Molecular Modeling, 2007, 13, 401-409.                                                                                                                                      | 1.8  | 29        |
| 52 | Cyclic nucleotide-gated ion channels in sensory transduction. FEBS Letters, 2006, 580, 2853-2859.                                                                                                                               | 2.8  | 87        |
| 53 | Electrophysiological Properties and Modeling of Murine Vomeronasal Sensory Neurons in Acute Slice<br>Preparations. Chemical Senses, 2006, 31, 425-435.                                                                          | 2.0  | 31        |
| 54 | Bestrophin-2 is a candidate calcium-activated chloride channel involved in olfactory transduction.<br>Proceedings of the National Academy of Sciences of the United States of America, 2006, 103,<br>12929-12934.               | 7.1  | 115       |

| #  | Article                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Fast Adaptation in Mouse Olfactory Sensory Neurons Does Not Require the Activity of Phosphodiesterase. Journal of General Physiology, 2006, 128, 171-184.                                                                                   | 1.9  | 55        |
| 56 | Voltage-activated current properties of male and female mouse vomeronasal sensory neurons:<br>sexually dichotomous?. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and<br>Behavioral Physiology, 2004, 190, 491-499. | 1.6  | 10        |
| 57 | Olfaction: From Odorant Molecules to the Olfactory Cortex. Physiology, 2004, 19, 101-104.                                                                                                                                                   | 3.1  | 45        |
| 58 | Whole-cell Recordings and Photolysis of Caged Compounds in Olfactory Sensory Neurons Isolated from the Mouse. Chemical Senses, 2003, 28, 705-716.                                                                                           | 2.0  | 28        |
| 59 | Co-expression of wild-type and mutant olfactory cyclic nucleotide-gated channels: restoration of the native sensitivity to Ca2+ and Mg2+ blockage. NeuroReport, 2001, 12, 2363-2367.                                                        | 1.2  | 4         |
| 60 | A Point Mutation in the Pore Region Alters Gating, Ca2+Blockage, and Permeation of Olfactory Cyclic<br>Nucleotide–Gated Channels. Journal of General Physiology, 2000, 116, 311-326.                                                        | 1.9  | 33        |
| 61 | The smell of adrenaline. Nature Neuroscience, 1999, 2, 106-108.                                                                                                                                                                             | 14.8 | 11        |
| 62 | Calcium signalling and regulation in olfactory neurons. Current Opinion in Neurobiology, 1999, 9, 419-426.                                                                                                                                  | 4.2  | 133       |
| 63 | Responses of Isolated Olfactory Sensory Neurons to Odorants. , 1998, , 85-93.                                                                                                                                                               |      | 0         |
| 64 | Mechanisms of modulation by internal protons of cyclic nucleotide–gated channels cloned from<br>sensory receptor cells. Proceedings of the Royal Society B: Biological Sciences, 1997, 264, 1157-1165.                                      | 2.6  | 17        |
| 65 | Mechanism of odorant adaptation in the olfactory receptor cell. Nature, 1997, 385, 725-729.                                                                                                                                                 | 27.8 | 333       |
| 66 | Modulation by internal protons of native cyclic nucleotide-gated channels from retinal rods<br>Journal of General Physiology, 1996, 108, 265-276.                                                                                           | 1.9  | 13        |
| 67 | Properties of Native and Cloned Cyclic Nucleotide Gated Channels from Bovine. , 1996, , 75-83.                                                                                                                                              |      | 4         |
| 68 | Quantal-like current fluctuations induced by odorants in olfactory receptor cells. Nature, 1995, 373, 435-437.                                                                                                                              | 27.8 | 91        |
| 69 | Cyclic nucleotide-gated channels in visual and olfactory transduction. Biophysical Chemistry, 1995, 55, 185-196.                                                                                                                            | 2.8  | 45        |
| 70 | Transduction and adaptation in sensory receptor cells. Journal of Neuroscience, 1995, 15, 7757-7768.                                                                                                                                        | 3.6  | 145       |
| 71 | The permeability of the cGMP-activated channel to organic cations in retinal rods of the tiger salamander Journal of Physiology, 1993, 460, 741-758.                                                                                        | 2.9  | 53        |
| 72 | The relation between stimulus and response in olfactory receptor cells of the tiger salamander<br>Journal of Physiology, 1993, 468, 1-10.                                                                                                   | 2.9  | 198       |

| #  | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Blockage and permeation of divalent cations through the cyclic GMPâ€activated channel from tiger salamander retinal rods Journal of Physiology, 1991, 440, 189-206.                                                       | 2.9 | 87        |
| 74 | Currents carried by monovalent cations through cyclic GMP-activated channels in excised patches from salamander rods Journal of Physiology, 1990, 424, 167-185.                                                           | 2.9 | 71        |
| 75 | Model of Phototransduction in Retinal Rods. Cold Spring Harbor Symposia on Quantitative Biology, 1990, 55, 563-573.                                                                                                       | 1.1 | 18        |
| 76 | Kinetics of phototransduction in retinal rods of the newt Triturus cristatus Journal of Physiology, 1989, 419, 265-295.                                                                                                   | 2.9 | 128       |
| 77 | The blocking effect of l-cis-diltiazem on the light-sensitive current of isolated rods of the tiger salamander. European Biophysics Journal, 1988, 16, 65-71.                                                             | 2.2 | 14        |
| 78 | The ionic selectivity of the lightâ€sensitive current in isolated rods of the tiger salamander Journal of Physiology, 1988, 402, 279-300.                                                                                 | 2.9 | 39        |
| 79 | The modulation of the ionic selectivity of the lightâ€sensitive current in isolated rods of the tiger salamander Journal of Physiology, 1988, 406, 181-198.                                                               | 2.9 | 32        |
| 80 | Ionic selectivity, blockage and control of light-sensitive channels. Neuroscience Research<br>Supplement: the Official Journal of the Japan Neuroscience Society, 1987, 6, S25-S44.                                       | 0.0 | 8         |
| 81 | Effects of calcium on the gramicidin A single channel in phosphatidylserine membranes. European<br>Biophysics Journal, 1987, 14, 369-74.                                                                                  | 2.2 | 19        |
| 82 | A microcomputer-based system for data acquisition and analysis of step-like current jumps due to the opening of single ionic channels in model membranes. International Journal of Bio-medical Computing, 1986, 19, 9-22. | 0.5 | 6         |