William M Shafer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2061694/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antimicrobial Resistance in Neisseria gonorrhoeae in the 21st Century: Past, Evolution, and Future. Clinical Microbiology Reviews, 2014, 27, 587-613.	13.6	894
2	Degradation of Human Antimicrobial Peptide LL-37 by <i>Staphylococcus aureus</i> -Derived Proteinases. Antimicrobial Agents and Chemotherapy, 2004, 48, 4673-4679.	3.2	454
3	Resistance of Neisseria gonorrhoeae to antimicrobial hydrophobic agents is modulated by the mtrRCDE efflux system. Microbiology (United Kingdom), 1995, 141, 611-622.	1.8	355
4	Modulation of <i>Neisseria gonorrhoeae</i> susceptibility to vertebrate antibacterial peptides due to a member of the resistance/nodulation/division efflux pump family. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 1829-1833.	7.1	353
5	Cationic Antimicrobial Peptide Resistance in Neisseria meningitidis. Journal of Bacteriology, 2005, 187, 5387-5396.	2.2	209
6	A Gonococcal Efflux Pump System Enhances Bacterial Survival in a Female Mouse Model of Genital Tract Infection. Infection and Immunity, 2003, 71, 5576-5582.	2.2	186
7	Clinically relevant mutations that cause derepression of the <i>Neisseria gonorrhoeae</i> MtrCâ€MtrDâ€MtrE Efflux pump system confer different levels of antimicrobial resistance and <i>in vivo</i> fitness. Molecular Microbiology, 2008, 70, 462-478.	2.5	185
8	Antimicrobial Resistance Expressed by <i>Neisseria gonorrhoeae</i> : A Major Global Public Health Problem in the 21st Century. Microbiology Spectrum, 2016, 4, .	3.0	178
9	Antibiotic resistance in <i>Neisseria gonorrhoeae</i> : origin, evolution, and lessons learned for the future. Annals of the New York Academy of Sciences, 2011, 1230, E19-28.	3.8	174
10	Overexpression of the MtrC-MtrD-MtrE Efflux Pump Due to an mtrR Mutation Is Required for Chromosomally Mediated Penicillin Resistance in Neisseria gonorrhoeae. Journal of Bacteriology, 2002, 184, 5619-5624.	2.2	166
11	<i>Neisseria gonorrhoeae</i> : Drug Resistance, Mouse Models, and Vaccine Development. Annual Review of Microbiology, 2017, 71, 665-686.	7.3	166
12	The farAB-encoded efflux pump mediates resistance of gonococci to long-chained antibacterial fatty acids. Molecular Microbiology, 1999, 33, 839-845.	2.5	148
13	Decreased Azithromycin Susceptibility of <i>Neisseria gonorrhoeae</i> Due to <i>mtrR</i> Mutations. Antimicrobial Agents and Chemotherapy, 1999, 43, 2468-2472.	3.2	145
14	Multidrug-resistant gonorrhea: A research and development roadmap to discover new medicines. PLoS Medicine, 2017, 14, e1002366.	8.4	129
15	Regulation of the MtrCâ€MtrDâ€MtrE Effluxâ€Pump System Modulates the In Vivo Fitness of <i>Neisseria gonorrhoeae</i> . Journal of Infectious Diseases, 2007, 196, 1804-1812.	4.0	116
16	The NorM Efflux Pump of Neisseria gonorrhoeae and Neisseria meningitidis Recognizes Antimicrobial Cationic Compounds. Journal of Bacteriology, 2003, 185, 1101-1106.	2.2	111
17	Antimicrobial peptides and endotoxin inhibit cytokine and nitric oxide release but amplify respiratory burst response in human and murine macrophages. Cellular Microbiology, 2005, 7, 1251-1262.	2.1	111
18	The MtrD protein of Neisseria gonorrhoeae is a member of the resistance/nodulation/division protein family constituting part of an efflux system. Microbiology (United Kingdom), 1997, 143, 2117-2125.	1.8	103

#	Article	IF	CITATIONS
19	Phosphoethanolamine Substitution of Lipid A and Resistance of <i>Neisseria gonorrhoeae</i> to Cationic Antimicrobial Peptides and Complement-Mediated Killing by Normal Human Serum. Infection and Immunity, 2009, 77, 1112-1120.	2.2	102
20	Experimental Gonococcal Infection in Male Volunteers: Cumulative Experience with Neisseria gonorrhoeae Strains FA1090 and MS11mkC. Frontiers in Microbiology, 2011, 2, 123.	3.5	102
21	Characterization of the MacA–MacB efflux system in Neisseria gonorrhoeae. Journal of Antimicrobial Chemotherapy, 2005, 56, 856-860.	3.0	100
22	Importance of Multidrug Efflux Pumps in the Antimicrobial Resistance Property of Clinical Multidrug-Resistant Isolates of Neisseria gonorrhoeae. Antimicrobial Agents and Chemotherapy, 2014, 58, 3556-3559.	3.2	96
23	Induction of the mtrCDE-encoded efflux pump system of Neisseria gonorrhoeae requires MtrA, an AraC-like protein. Molecular Microbiology, 1999, 33, 651-658.	2.5	93
24	A Novel Mechanism of High-Level, Broad-Spectrum Antibiotic Resistance Caused by a Single Base Pair Change in Neisseria gonorrhoeae. MBio, 2011, 2, .	4.1	77
25	Functional Cloning and Characterization of the Multidrug Efflux Pumps NorM from <i>Neisseria gonorrhoeae</i> and YdhE from <i>Escherichia coli</i> . Antimicrobial Agents and Chemotherapy, 2008, 52, 3052-3060.	3.2	76
26	Impact of Fluoroquinolone Resistance Mutations on Gonococcal Fitness and In Vivo Selection for Compensatory Mutations. Journal of Infectious Diseases, 2012, 205, 1821-1829.	4.0	73
27	Neutrophil Killing of Bacteria by Oxygen-Independent Mechanisms: A Historical Summary. Clinical Infectious Diseases, 1985, 7, 398-403.	5.8	71
28	Mechanistic Basis for Decreased Antimicrobial Susceptibility in a Clinical Isolate of Neisseria gonorrhoeae Possessing a Mosaic-Like <i>mtr</i> Efflux Pump Locus. MBio, 2018, 9, .	4.1	70
29	Modulation of the mtrCDE-encoded efflux pump gene complex of Neisseria meningitidis due to a Correia element insertion sequence. Molecular Microbiology, 2004, 54, 731-741.	2.5	68
30	Population structure of <i>Neisseria gonorrhoeae</i> based on whole genome data and its relationship with antibiotic resistance. PeerJ, 2015, 3, e806.	2.0	67
31	Crystal Structure of the Neisseria gonorrhoeae MtrD Inner Membrane Multidrug Efflux Pump. PLoS ONE, 2014, 9, e97903.	2.5	65
32	A community-driven resource for genomic epidemiology and antimicrobial resistance prediction of Neisseria gonorrhoeae at Pathogenwatch. Genome Medicine, 2021, 13, 61.	8.2	63
33	Copper(II)-Bis(Thiosemicarbazonato) Complexes as Antibacterial Agents: Insights into Their Mode of Action and Potential as Therapeutics. Antimicrobial Agents and Chemotherapy, 2015, 59, 6444-6453.	3.2	59
34	MtrR Modulates <i>rpoH</i> Expression and Levels of Antimicrobial Resistance in <i>Neisseria gonorrhoeae</i> . Journal of Bacteriology, 2009, 191, 287-297.	2.2	58
35	Genomic evolution of Neisseria gonorrhoeae since the preantibiotic era (1928–2013): antimicrobial use/misuse selects for resistance and drives evolution. BMC Genomics, 2020, 21, 116.	2.8	57
36	Lipid A's Structure Mediates Neisseria gonorrhoeae Fitness during Experimental Infection of Mice and Men. MBio, 2013, 4, e00892-13.	4.1	56

#	Article	IF	CITATIONS
37	The Major Cold Shock Gene, cspA , Is Involved in the Susceptibility of Staphylococcus aureus to an Antimicrobial Peptide of Human Cathepsin G. Infection and Immunity, 2003, 71, 4304-4312.	2.2	55
38	The increased bactericidal activity of a fatty acid-modified synthetic antimicrobial peptide of human cathepsin G correlates with its enhanced capacity to interact with model membranes. International Journal of Antimicrobial Agents, 2003, 21, 13-19.	2.5	54
39	Neisseria gonorrhoeae Modulates Iron-Limiting Innate Immune Defenses in Macrophages. PLoS ONE, 2014, 9, e87688.	2.5	52
40	The Down-Regulation of Cathepsin G in THP-1 Monocytes after Infection with Mycobacterium tuberculosis Is Associated with Increased Intracellular Survival of Bacilli. Infection and Immunity, 2004, 72, 5712-5721.	2.2	51
41	Crystal Structure of the Open State of the Neisseria gonorrhoeae MtrE Outer Membrane Channel. PLoS ONE, 2014, 9, e97475.	2.5	51
42	Cryo-EM Structures of a Gonococcal Multidrug Efflux Pump Illuminate a Mechanism of Drug Recognition and Resistance. MBio, 2020, 11, .	4.1	50
43	A Mutant Form of the Neisseria gonorrhoeae Pilus Secretin Protein PilQ Allows Increased Entry of Heme and Antimicrobial Compounds. Journal of Bacteriology, 2004, 186, 730-739.	2.2	49
44	Regulation of mtrF Expression in Neisseria gonorrhoeae and Its Role in High-Level Antimicrobial Resistance. Journal of Bacteriology, 2005, 187, 3713-3720.	2.2	49
45	CspA Regulates Pigment Production in Staphylococcus aureus through a SigB-Dependent Mechanism. Journal of Bacteriology, 2005, 187, 8181-8184.	2.2	49
46	The serogroup B meningococcal outer membrane vesicle-based vaccine 4CMenB induces cross-species protection against Neisseria gonorrhoeae. PLoS Pathogens, 2020, 16, e1008602.	4.7	49
47	Importance of lipooligosaccharide structure in determining gonococcal resistance to hydrophobic antimicrobial agents resulting from the mtr efflux system. Molecular Microbiology, 1995, 16, 1001-1009.	2.5	47
48	Identification of a cell envelope protein (MtrF) involved in hydrophobic antimicrobial resistance in Neisseria gonorrhoeae. Journal of Antimicrobial Chemotherapy, 2003, 51, 27-37.	3.0	47
49	Phosphoethanolamine Residues on the Lipid A Moiety of Neisseria gonorrhoeae Lipooligosaccharide Modulate Binding of Complement Inhibitors and Resistance to Complement Killing. Infection and Immunity, 2013, 81, 33-42.	2.2	46
50	Human Antimicrobial Peptide LL-37 Induces MefE/Mel-Mediated Macrolide Resistance in <i>Streptococcus pneumoniae</i> . Antimicrobial Agents and Chemotherapy, 2010, 54, 3516-3519.	3.2	45
51	Polyamines Can Increase Resistance of Neisseria gonorrhoeae to Mediators of the Innate Human Host Defense. Infection and Immunity, 2010, 78, 3187-3195.	2.2	44
52	Genetic Resistance Determinants, In Vitro Time-Kill Curve Analysis and Pharmacodynamic Functions for the Novel Topoisomerase II Inhibitor ETX0914 (AZD0914) in Neisseria gonorrhoeae. Frontiers in Microbiology, 2015, 6, 1377.	3.5	44
53	Structure and Function of Neisseria gonorrhoeae MtrF Illuminates a Class of Antimetabolite Efflux Pumps. Cell Reports, 2015, 11, 61-70.	6.4	44
54	Characterization of the Multiple Transferable Resistance Repressor, MtrR, from Neisseria gonorrhoeae. Journal of Bacteriology, 2005, 187, 5008-5012.	2.2	43

#	Article	IF	CITATIONS
55	Tailoring an Antibacterial Peptide of Human Lysosomal Cathepsin G to Enhance its Broad-Spectrum Action Against Antibiotic-Resistant Bacterial Pathogens. Current Pharmaceutical Design, 2002, 8, 695-702.	1.9	42
56	Efflux Pumps of the Resistance–Nodulation–Division Family: A Perspective of their Structure, Function, and Regulation in Gramâ€Negative Bacteria. Advances in Enzymology and Related Areas of Molecular Biology, 2011, 77, 109-146.	1.3	42
57	On the in vivo significance of bacterial resistance to antimicrobial peptides. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 3101-3111.	2.6	42
58	Azithromycin susceptibility of Neisseria gonorrhoeae in the USA in 2017: a genomic analysis of surveillance data. Lancet Microbe, The, 2020, 1, e154-e164.	7.3	42
59	Loss-of-function mutations in the mtr efflux system of Neisseria gonorrhoeae. Microbiology (United) Tj ETQq1 I	0.784314 1.8	rgBT /Over
60	Altered Growth, Pigmentation, and Antimicrobial Susceptibility Properties of <i>Staphylococcusaureus</i> Due to Loss of the Major Cold Shock Gene <i>cspB</i> . Antimicrobial Agents and Chemotherapy, 2010, 54, 2283-2290.	3.2	38
61	Phosphoethanolamine Decoration of Neisseria gonorrhoeae Lipid A Plays a Dual Immunostimulatory and Protective Role during Experimental Genital Tract Infection. Infection and Immunity, 2014, 82, 2170-2179.	2.2	38
62	Evidence of Recent Genomic Evolution in Gonococcal Strains With Decreased Susceptibility to Cephalosporins or Azithromycin in the United States, 2014–2016. Journal of Infectious Diseases, 2019, 220, 294-305.	4.0	38
63	Spermine impairs biofilm formation by <i>Neisseria gonorrhoeae</i> . FEMS Microbiology Letters, 2013, 343, 64-69.	1.8	36
64	Divergence and transcriptional analysis of the division cell wall (dcw) gene cluster in Neisseria spp Molecular Microbiology, 2003, 47, 431-442.	2.5	35
65	Genetic organization and regulation of antimicrobial efflux systems possessed by Neisseria gonorrhoeae and Neisseria meningitidis. Journal of Molecular Microbiology and Biotechnology, 2001, 3, 219-24.	1.0	35
66	The Iron-Repressed, AraC-Like Regulator MpeR Activates Expression offetAin Neisseria gonorrhoeae. Infection and Immunity, 2011, 79, 4764-4776.	2.2	32
67	Differential Regulation of ponA and pilMNOPQ Expression by the MtrR Transcriptional Regulatory Protein in Neisseria gonorrhoeae. Journal of Bacteriology, 2007, 189, 4569-4577.	2.2	31
68	Copper lons and Coordination Complexes as Novel Carbapenem Adjuvants. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	31
69	Challenges with gonorrhea in the era of multi-drug and extensively drug resistance – are we on the right track?. Expert Review of Anti-Infective Therapy, 2014, 12, 653-656.	4.4	30
70	Susceptibility of Treponema pallidum to host-derived antimicrobial peptides. Peptides, 2003, 24, 1741-1746.	2.4	29
71	Towards an Understanding of Chromosomally Mediated Penicillin Resistance in Neisseria gonorrhoeae : Evidence for a Porin-Efflux Pump Collaboration. Journal of Bacteriology, 2006, 188, 2297-2299.	2.2	29
72	The Human Host Defense Peptide LL-37 Interacts with Neisseria meningitidis Capsular Polysaccharides and Inhibits Inflammatory Mediators Release. PLoS ONE, 2010, 5, e13627.	2.5	28

#	Article	IF	CITATIONS
73	MpeR Regulates the <i>mtr</i> Efflux Locus in Neisseria gonorrhoeae and Modulates Antimicrobial Resistance by an Iron-Responsive Mechanism. Antimicrobial Agents and Chemotherapy, 2012, 56, 1491-1501.	3.2	28
74	A Putatively Phase Variable Gene (dca) Required for Natural Competence in Neisseria gonorrhoeae but Not Neisseria meningitidis Is Located within the Division Cell Wall (dcw) Gene Cluster. Journal of Bacteriology, 2001, 183, 1233-1241.	2.2	27
75	Inducible, but Not Constitutive, Resistance of Gonococci to Hydrophobic Agents Due to the MtrC-MtrD-MtrE Efflux Pump Requires TonB-ExbB-ExbD Proteins. Antimicrobial Agents and Chemotherapy, 2002, 46, 561-565.	3.2	27
76	Use of Cefazolin Microspheres to Treat Localized Methicillin-Resistant Staphylococcus aureus Infections in Rats. Journal of Surgical Research, 1999, 86, 97-102.	1.6	26
77	Lipooligosaccharide Structure is an Important Determinant in the Resistance of Neisseria Gonorrhoeae to Antimicrobial Agents of Innate Host Defense. Frontiers in Microbiology, 2011, 2, 30.	3.5	26
78	Phase variable changes in genes lgtA and lgtC within the lgtABCDE operon of Neisseria gonorrhoeae can modulate gonococcal susceptibility to normal human serum. Journal of Endotoxin Research, 2002, 8, 47-58.	2.5	25
79	Membrane glycerophospholipid biosynthesis in Neisseria meningitidis and Neisseria gonorrhoeae: identification, characterization, and mutagenesis of a lysophosphatidic acid acyltransferase. Molecular Microbiology, 1995, 18, 401-412.	2.5	24
80	Phenotypic and Genotypic Analyses of <i>Neisseria gonorrhoeae</i> Isolates That Express Frequently Recovered PorB PIA Variable Region Types Suggest that Certain P1a Porin Sequences Confer a Selective Advantage for Urogenital Tract Infection. Infection and Immunity, 2008, 76, 3700-3709.	2.2	24
81	Dueling Regulatory Properties of a Transcriptional Activator (MtrA) and Repressor (MtrR) That Control Efflux Pump Gene Expression in Neisseria gonorrhoeae. MBio, 2012, 3, e00446-12.	4.1	22
82	Phosphoethanolamine Modification of Neisseria gonorrhoeae Lipid A Reduces Autophagy Flux in Macrophages. PLoS ONE, 2015, 10, e0144347.	2.5	22
83	Phase-Variable Expression of <i>lptA</i> Modulates the Resistance of Neisseria gonorrhoeae to Cationic Antimicrobial Peptides. Antimicrobial Agents and Chemotherapy, 2014, 58, 4230-4233.	3.2	21
84	The MisR Response Regulator Is Necessary for Intrinsic Cationic Antimicrobial Peptide and Aminoglycoside Resistance in Neisseria gonorrhoeae. Antimicrobial Agents and Chemotherapy, 2016, 60, 4690-4700.	3.2	21
85	Developing target product profiles for Neisseria gonorrhoeae diagnostics in the context of antimicrobial resistance: An expert consensus. PLoS ONE, 2020, 15, e0237424.	2.5	21
86	Mosaic Drug Efflux Gene Sequences from Commensal <i>Neisseria</i> Can Lead to Low-Level Azithromycin Resistance Expressed by <i>Neisseria gonorrhoeae</i> Clinical Isolates. MBio, 2018, 9, .	4.1	19
87	Could Dampening Expression of the Neisseria gonorrhoeae <i>mtrCDE</i> -Encoded Efflux Pump Be a Strategy To Preserve Currently or Resurrect Formerly Used Antibiotics To Treat Gonorrhea?. MBio, 2019, 10, .	4.1	18
88	Integration Host Factor is required for FarR repression of the farAB-encoded efflux pump of Neisseria gonorrhoeae. Molecular Microbiology, 2006, 60, 1381-1400.	2.5	16
89	Off-Target Gene Regulation Mediated by Transcriptional Repressors of Antimicrobial Efflux Pump Genes in Neisseria gonorrhoeae. Antimicrobial Agents and Chemotherapy, 2011, 55, 2559-2565.	3.2	16
90	Structure-Function Relationships of the Neisserial EptA Enzyme Responsible for Phosphoethanolamine Decoration of Lipid A: Rationale for Drug Targeting. Frontiers in Microbiology, 2018, 9, 1922.	3.5	16

#	Article	IF	CITATIONS
91	Identification of Regulatory Elements That Control Expression of the tbpBA Operon in Neisseria gonorrhoeae. Journal of Bacteriology, 2014, 196, 2762-2774.	2.2	15
92	Control of gdhR Expression in Neisseria gonorrhoeae via Autoregulation and a Master Repressor (MtrR) of a Drug Efflux Pump Operon. MBio, 2017, 8, .	4.1	14
93	Identification of a Neisseria gonorrhoeae Histone Deacetylase: Epigenetic Impact on Host Gene Expression. Pathogens, 2020, 9, 132.	2.8	14
94	Future treatment of gonorrhoea – novel emerging drugs are essential and in progress?. Expert Opinion on Emerging Drugs, 2015, 20, 357-360.	2.4	13
95	Overproduction of the MtrCDE Efflux Pump in Neisseria gonorrhoeae Produces Unexpected Changes in Cellular Transcription Patterns. Antimicrobial Agents and Chemotherapy, 2015, 59, 724-726.	3.2	13
96	Structural, Biochemical, and <i>In Vivo</i> Characterization of MtrR-Mediated Resistance to Innate Antimicrobials by the Human Pathogen <i>Neisseria gonorrhoeae</i> . Journal of Bacteriology, 2019, 201, .	2.2	13
97	Structures of <i>Neisseria gonorrhoeae</i> MtrR-operator complexes reveal molecular mechanisms of DNA recognition and antibiotic resistance-conferring clinical mutations. Nucleic Acids Research, 2021, 49, 4155-4170.	14.5	13
98	Transcriptional regulation of a gonococcal gene encoding a virulence factor (L-lactate permease). PLoS Pathogens, 2019, 15, e1008233.	4.7	12
99	Resistance of Neisseria meningitidis to the Toxic Effects of Heme Iron and Other Hydrophobic Agents Requires Expression of ght. Journal of Bacteriology, 2005, 187, 5214-5223.	2.2	11
100	Two ABC Transporter Operons and the Antimicrobial Resistance Gene mtrF Are pilT Responsive in Neisseria gonorrhoeae. Journal of Bacteriology, 2007, 189, 5399-5402.	2.2	11
101	The Transcriptional Repressor, MtrR, of the mtrCDE Efflux Pump Operon of Neisseria gonorrhoeae Can Also Serve as an Activator of "off Target―Gene (glnE) Expression. Antibiotics, 2015, 4, 188-197.	3.7	11
102	The TolC-Like Protein of <i>Neisseria meningitidis</i> Is Required for Extracellular Production of the Repeats-in-Toxin Toxin FrpC but Not for Resistance to Antimicrobials Recognized by the Mtr Efflux Pump System. Infection and Immunity, 2007, 75, 6008-6012.	2.2	10
103	Efflux Pumps in Neisseria gonorrhoeae: Contributions to Antimicrobial Resistance and Virulence. , 2016, , 439-469.		10
104	MtrR Control of a Transcriptional Regulatory Pathway in Neisseria meningitidis That Influences Expression of a Gene (nadA) Encoding a Vaccine Candidate. PLoS ONE, 2013, 8, e56097.	2.5	7
105	Characterization of a spermine/spermidine transport system reveals a novel DNA sequence duplication in <i>Neisseria gonorrhoeae</i> . FEMS Microbiology Letters, 2015, 362, fnv125.	1.8	7
106	Whole-Genome Sequencing of a Large Panel of Contemporary Neisseria gonorrhoeae Clinical Isolates Indicates that a Wild-Type <i>mtrA</i> Gene Is Common: Implications for Inducible Antimicrobial Resistance. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	7
107	Crystallization and preliminary X-ray diffraction analysis of the multidrug efflux transporter NorM from <i>Neisseria gonorrhoeae</i> . Acta Crystallographica Section F: Structural Biology Communications, 2008, 64, 289-292.	0.7	5
108	Biologic Activities of the TolC-Like Protein of <i>Neisseria meningitidis</i> as Assessed by Functional Complementation in <i>Escherichia coli</i> . Antimicrobial Agents and Chemotherapy, 2010, 54, 506-508.	3.2	5

#	Article	IF	CITATIONS
109	The evolution of infectious agents in relation to sex in animals and humans: brief discussions of some individual organisms. Annals of the New York Academy of Sciences, 2011, 1230, 74-107.	3.8	5
110	Mechanisms and Significance of Bacterial Resistance to Human Cationic Antimicrobial Peptides. , 2013, , 219-254.		5
111	Antimicrobial Resistance Expressed by Neisseria gonorrhoeae: A Major Global Public Health Problem in the 21st Century. , 2016, , 213-237.		5
112	The genes that encode the gonococcal transferrin binding proteins, TbpB and TbpA, are differentially regulated by MisR under ironâ€replete and ironâ€depleted conditions. Molecular Microbiology, 2016, 102, 137-151.	2.5	5
113	Does the Cervicovaginal Microbiome Facilitate Transmission of <i>Neisseria gonorrhoeae</i> From Women to Men? Implications for Understanding Transmission of Gonorrhea and Advancing Vaccine Development. Journal of Infectious Diseases, 2016, 214, 1615-1617.	4.0	4
114	<i>cis</i> - and <i>trans</i> -Acting Factors Influence Expression of the <i>norM</i> -Encoded Efflux Pump of Neisseria gonorrhoeae and Levels of Gonococcal Susceptibility to Substrate Antimicrobials. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	4
115	Gonococcal Clinical Strains Bearing a Common <i>gdhR</i> Single Nucleotide Polymorphism That Results in Enhanced Expression of the Virulence Gene <i>lctP</i> Frequently Possess a <i>mtrR</i> Promoter Mutation That Decreases Antibiotic Susceptibility. MBio, 2022, 13, e0027622.	4.1	4
116	A Single Amino Acid Substitution in Elongation Factor G Can Confer Low-Level Gentamicin Resistance in <i>Neisseria gonorrhoeae</i> . Antimicrobial Agents and Chemotherapy, 2022, 66, e0025122.	3.2	4
117	Cleavage of gonococcal pilin and alteration of common pilin epitopes by human neutrophil lysosomal elastase. FEMS Microbiology Letters, 1988, 52, 47-51.	1.8	3
118	Expression of the MtrC-MtrD-MtrE Efflux Pump in Neisseria gonorrhoeae and Bacterial Survival in the Presence of Antimicrobials. , 2008, , 55-63.		3
119	Taking the Gonococcus-Human Relationship to a Whole New Level: Implications for the Coevolution of Microbes and Humans. MBio, 2011, 2, e00067-11.	4.1	2
120	Reply: Evidence of Recent Genomic Evolution in Gonococcal Strains With Decreased Susceptibility to Cephalosporins or Azithromycin in the United States, 2014–2016. Journal of Infectious Diseases, 2020, 221, 852-853.	4.0	2
121	Transcriptional control of the gonococcal ompA gene by the MisR/MisS two-component regulatory system. Scientific Reports, 2020, 10, 9425.	3.3	2
122	Drug Targeting a Gonococcal Virulence Factor Exploits Host Antimicrobial Peptides in Clearance of Infection. Journal of Infectious Diseases, 2020, 222, 1585-1586.	4.0	1
123	Generation of antiserum to specific epitopes. Molecular Biotechnology, 1996, 6, 231-240.	2.4	0
124	Title is missing!. , 2020, 16, e1008602.		0
125	Title is missing!. , 2020, 16, e1008602.		0
126	Title is missing!. , 2020, 16, e1008602.		0

#	Article	IF	CITATIONS
127	Title is missing!. , 2020, 16, e1008602.		0